2,069 research outputs found

    Properties of the amniotic membrane for potential use in tissue engineering

    Get PDF
    An important component of tissue engineering (TE) is the supporting matrix upon which cells and tissues grow, also known as the scaffold. Scaffolds must easily integrate with host tissue and provide an excellent environment for cell growth and differentiation. Most scaffold materials are naturally derived from mammalian tissues. The amniotic membrane (AM) is considered an important potential source for scaffolding material. The AM represents the innermost layer of the placenta and is composed of a single epithelial layer, a thick basement membrane and an avascular stroma. The special structure and biological viability of the AM allows it to be an ideal candidate for creating scaffolds used in TE. Epithelial cells derived from the AM have the advantages of stem cells, yet are a more suitable source of cells for TE than stem cells. The extracellular matrix components of the basement membrane of the AM create an almost native scaffold for cell seeding in TE. In addition, the AM has other biological properties important for TE, including anti-inflammatory, anti-microbial, anti-fibrosis, anti-scarring, as well as reasonable mechanical property and low immunogenicity. In this review, the various properties of the AM are discussed in light of their potential use for TE

    Mycoflora of fungal contamination in wheat storage (silos) in golestan province, north of Iran

    Get PDF
    Background: Cereal products are susceptible to mould damage during pre- and post-harvesting stages of the production. The regional specificity of Golestan province in the northern region of of Iran, with its high temperature and high relative humidity, acts as a leading factor for the growth of aflatoxin-producing fungi. It is well known that contamination of starch-based ingredients with mycotoxigenic fungi is a risk factor among the consumers due to its aflatoxins. Objectives: This survey was carried out to determine the extent of fungal contamination of wheat in three silos of Golestan province in Iran. Materials and Methods: 34 samples from three active silos were collected in order to clean the polyethylene bags. Wheat analyzed for fungal contamination and aflatoxins extracted by immunoaffinity column chromatography, and measured by HPLC method. Results: The most common moulds isolated were Alternaria spp. 26.7%, Aspergillus niger 21.4%, Fusarium spp. 17.8%, Aspergillus flavus 10.7%, Cladosporium spp. 10.7%, Penicillium spp. 8.9%, and Rhizopus spp. 3.5%. The screening of aflatoxin, B1, B2, G1 and G2 was carried out. 10(29.4%) samples of wheat had traces of aflatoxin, but in a level lower than the standard levels [Institute of Standards and Industrial Research of Iran (ISIR< 15 ng/g)]. Conclusions: Despite the lower detected aflatoxin levels (lower than the ISIR level), the fungal contamination rate could not be neglected. Since the isolated mycotoxigenic fungi such as Aspergillus spp. and Fusarium spp. are important in food industry, it would be possible that the increased retention time of samples might have raised the detected contamination rate. © 2013, Ahvaz Jundishapur University of Medical Sciences

    Quantitative determination of aflatoxin by high performance liquid chromatography in wheat silos in Golestan province, north of Iran

    Get PDF
    Background: Aflatoxins are the most common mycotoxins that contaminate crops. They are produced by fungi such as Aspergillus flavus and Aspergillus parasiticus. Wheat (Tricitumaestivum) is one of the most important staple foods used in Iran, and the environmental conditions in the north of Iran are favorable to fungal growth. This study was designed in order to determine the aflatoxin concentration in wheat samples from silos in Golestan Province north of Iran. Methods: Samples were collected from three silos of Golestan province. First, aflatoxins were isolated using immu-noaffinity chromatography. Then the aflatoxin concentrations were determined by High performance liquid chroma-tography (HPLC) method and fluorescence detector. Results: Ten out of 34 samples (29.4 of samples) were contaminated by aflatoxins.No concentration was found above permitted aflatoxin levels in Iran (15 ng/g). In one sample (2.9), aflatoxin B1 was seen over the permissible limits in Iran. The highest level found in samples for total aflatoxin, aflatoxin B1, aflatoxin B2, aflatoxin G1 and aflatox-in G2 were 7.08 ng/g, 6.91 ng/g, 0.29 ng/g, 1.37 ng/g and 0.23 ng/g, respectively. No correlation was found between humidity levels in wheat samples contained aflatoxin and wheat samples without aflatoxin. Conclusion: Despite the total aflatoxins determined in samples were below the permissible limits in Iran, the 29 aflatoxin contamination rate can negatively affect health factors and it should not be neglected. So, it is predictable that if the storage duration of samples increases, the aflatoxin contamination levels will increase. © 2015, Iranian Journal of Public Health. All rights reserved

    Synthetic dye decolorization by three sources of fungal laccase

    Get PDF
    Decolorization of six synthetic dyes using three sources of fungal laccase with the origin of Aspergillus oryzae, Trametes versicolor, and Paraconiothyrium variabile was investigated. Among them, the enzyme from P. variabile was the most efficient which decolorized bromophenol blue (100%), commassie brilliant blue (91%), panseu-S (56%), Rimazol brilliant blue R (RBBR; 47%), Congo red (18.5%), and methylene blue (21.3%) after 3 h incubation in presence of hydroxybenzotriazole (HBT; 5 mM) as the laccase mediator. It was also observed that decolorization efficiency of all dyes was enhanced by increasing of HBT concentration from 0.1 mM to 5 mM. Laccase from A. oryzae was able to remove 53% of methylene blue and 26% of RBBR after 30 min incubation in absence of HBT, but the enzyme could not efficiently decolorize other dyes even in presence of 5 mM of HBT. In the case of laccase from T. versicolor, only RBBR was decolorized (93%) in absence of HBT after 3 h incubation. © 2012 Forootanfar et al.; licensee BioMed Central Ltd

    The Antibacterial Effect of Low Temperature Stored Amnion on Growth of Escherichia Coli, Staphylococcus Aureus and Pseudomonas Aeruginosa

    Get PDF
    BACKGROUND AND OBJECTIVE: Amniotic membrane (AM) has a lot of applied properties like anti-bacterial characteristic mediated by peptides such as elafin. Because of limitations in use of freshly prepared tissue, there are various methods for long-term preservation of amniotic membrane. This study was conducted to determine the effect of cryopreservation, as one of the common methods of preservation of amniotic membrane, on its antibacterial property against the growth of commonly occurring bacteria in the clinic. METHODS: In this experimental study, the effect of fresh AM (from elective Cesarean) and cryopreserved (by 10% DMSO) AM on the growth of three standard bacterial strains including Escherichia coli ATCC 25922, Staphylococcus aureus, Pseudomonas aeruginosa and two clinical isolated strains of E.coli were evaluated using disk diffusion test. In this method, pieces of fresh or cryopreserved AM was placed in the culture plate after bacterial culturing. After incubation, the number of plates with inhibition zone and amount of inhibition zone were measured. The amount of elafin was measured in AM samples using ELISA. RESULTS: Fresh AM inhibit the growth of Pseudomonas aeruginosa and two clinical isolated strains of E.coli. However, it has no effect on the growth of standard strain of Escherichia coli and Staphylococcus aureus strain. There is no difference in the number of plates including inhibition zone between fresh and cryopreserved AM. The amount of elafin decreased significantly in cryopreserved AM (p<0.01). CONCLUSION: The results of this study showed that the anti-bacterial property of the AM depends on bacterial species. In addition, the cryopreservation process maintains anti-bacterial properties of amniotic stem cells

    Comparing the efficiency of unmodified dried sludge adsorbents and those modified via chemical and microwave methods in removing 2,4-dinitrophenol from aqueous solutions

    Get PDF
    2,4-dinitrophenol (DNP) is found in small amounts in the effluent of many wastewater treatment plants. The contamination of drinking water with this pollutant, even in trace amounts, causes toxicity, health problems, and unfavorable taste and odor. This study aims to compare the efficiency of non-modified and modified dried sludge adsorbents in removing 2,4 DNP from aqueous solutions. The results of 2,4DNP removal by high-performance liquid chromatography method at the wavelength of 360 nm in a batch mode were obtained by changing the influential factors including contact time, pH, initial concentration of the contaminant, and adsorbent dosage. Eventually, the results were analyzed by kinetic and isotherm models. In this research, the optimal time was obtained as 60 min and pH as seven for all three adsorbents. The results showed that the removal percentage increases by rising adsorbent dosage and reducing contaminant concentration. The correlation coefficient value of linear and non-linear led that in kinetic studies, it follows the pseudo-second order model. In contrast, in isotherm studies, examining linear and non-linear models of isotherms showed that the data for every three types of adsorbents follow the Freundlich model well. The adsorption process is highly dependent on pH and affects the adsorbent surface properties, ionization degree, and removal percentage. At high pH, hydroxide ions (OH) compete with 2,4 DNP molecules for the adsorption sites. The adsorption occurs quickly and gradually reaches a constant value because, over time, the adsorption sites are occupied until reaching a saturated limit. By increasing the adsorbent dosage, the adsorption percentage increased significantly, which is due to the fact that higher amounts of adsorbent cause more adsorption sites. © 2020, Springer Nature Switzerland AG

    The SwissLipids knowledgebase for lipid biology.

    Get PDF
    MOTIVATION: Lipids are a large and diverse group of biological molecules with roles in membrane formation, energy storage and signaling. Cellular lipidomes may contain tens of thousands of structures, a staggering degree of complexity whose significance is not yet fully understood. High-throughput mass spectrometry-based platforms provide a means to study this complexity, but the interpretation of lipidomic data and its integration with prior knowledge of lipid biology suffers from a lack of appropriate tools to manage the data and extract knowledge from it. RESULTS: To facilitate the description and exploration of lipidomic data and its integration with prior biological knowledge, we have developed a knowledge resource for lipids and their biology-SwissLipids. SwissLipids provides curated knowledge of lipid structures and metabolism which is used to generate an in silico library of feasible lipid structures. These are arranged in a hierarchical classification that links mass spectrometry analytical outputs to all possible lipid structures, metabolic reactions and enzymes. SwissLipids provides a reference namespace for lipidomic data publication, data exploration and hypothesis generation. The current version of SwissLipids includes over 244 000 known and theoretically possible lipid structures, over 800 proteins, and curated links to published knowledge from over 620 peer-reviewed publications. We are continually updating the SwissLipids hierarchy with new lipid categories and new expert curated knowledge. AVAILABILITY: SwissLipids is freely available at http://www.swisslipids.org/. CONTACT: [email protected] SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online

    The in vivo effect of Lacto-N-neotetraose (LNnT) on the expression of type 2 immune response involved genes in the wound healing process

    Get PDF
    Lacto-n-neotatraose (LNnT) oligosaccharide shows properties such as anti-inflammatory, type 2 immune response induction, induced angiogenesis, and anti-bacterial effects. Here, we hypothesized that the application of LnNT in the skin full-thickness wound can accelerate the healing process through its anti-inflammatory effect as well as induction of type 2 immune responses. In this study, we evaluated the cell viability of fibroblasts in the presence of LNnT. The full-thickness wound model was created by punch biopsy. The mice were treated intradermaly with LNnT at the concentrations of 100 and 200 µg or PBS as a control group. The wounds samples were compared based on the macroscopic and histological evaluations. The amount of collagen deposition and expression of genes involved in type 2 immunity were measured by the hydroxyproline assay and real time PCR method, respectively. Our results showed that LNnT had no negative effect on the cell viability of fibroblasts. LNnT increased the wound closure rate on day 7 post-wounding. H&E stain analysis revealed that mice treated with 200 µg LNnT exhibited better healing score, follicle formation, and lower epidermal thickness index. The mice treated with LNnT exhibited a lower collagen deposition on day 21 and higher collagen content on days 7 and 14 post-treatment. The LNnT groups also exhibited a lower number of neutrophils and a higher number of basal cells and fibroblasts. The expression rate of IL-10, IL-4, and IL-13 was higher in the LNnT groups. These results showed the high potential of LNnT for use in treatment of full-thickness wounds. © 2020, The Author(s)
    corecore