31 research outputs found

    Mapping Transient Hyperventilation Induced Alterations with Estimates of the Multi-Scale Dynamics of BOLD Signal

    Get PDF
    Temporal blood oxygen level dependent (BOLD) contrast signals in functional MRI during rest may be characterized by power spectral distribution (PSD) trends of the form 1/fα. Trends with 1/f characteristics comprise fractal properties with repeating oscillation patterns in multiple time scales. Estimates of the fractal properties enable the quantification of phenomena that may otherwise be difficult to measure, such as transient, non-linear changes. In this study it was hypothesized that the fractal metrics of 1/f BOLD signal trends can map changes related to dynamic, multi-scale alterations in cerebral blood flow (CBF) after a transient hyperventilation challenge. Twenty-three normal adults were imaged in a resting-state before and after hyperventilation. Different variables (1/f trend constant α, fractal dimension Df, and, Hurst exponent H) characterizing the trends were measured from BOLD signals. The results show that fractal metrics of the BOLD signal follow the fractional Gaussian noise model, even during the dynamic CBF change that follows hyperventilation. The most dominant effect on the fractal metrics was detected in grey matter, in line with previous hyperventilation vaso-reactivity studies. The α was able to differentiate also blood vessels from grey matter changes. Df was most sensitive to grey matter. H correlated with default mode network areas before hyperventilation but this pattern vanished after hyperventilation due to a global increase in H. In the future, resting-state fMRI combined with fractal metrics of the BOLD signal may be used for analyzing multi-scale alterations of cerebral blood flow

    Age-Related Differences in Functional Nodes of the Brain Cortex – A High Model Order Group ICA Study

    Get PDF
    Functional MRI measured with blood oxygen dependent (BOLD) contrast in the absence of intermittent tasks reflects spontaneous activity of so-called resting state networks (RSN) of the brain. Group level independent component analysis (ICA) of BOLD data can separate the human brain cortex into 42 independent RSNs. In this study we evaluated age-related effects from primary motor and sensory, and, higher level control RSNs. One hundred sixty-eight healthy subjects were scanned and divided into three groups: 55 adolescents (ADO, 13.2 ± 2.4 years), 59 young adults (YA, 22.2 ± 0.6 years), and 54 older adults (OA, 42.7 ± 0.5 years), all with normal IQ. High model order group probabilistic ICA components (70) were calculated and dual-regression analysis was used to compare 21 RSN's spatial differences between groups. The power spectra were derived from individual ICA mixing matrix time series of the group analyses for frequency domain analysis. We show that primary sensory and motor networks tend to alter more in younger age groups, whereas associative and higher level cognitive networks consolidate and re-arrange until older adulthood. The change has a common trend: both spatial extent and the low frequency power of the RSN's reduce with increasing age. We interpret these result as a sign of normal pruning via focusing of activity to less distributed local hubs

    Resting state fMRI reveals a default mode dissociation between retrosplenial and medial prefrontal subnetworks in ASD despite motion scrubbing

    Get PDF
    In resting state functional magnetic resonance imaging (fMRI) studies of autism spectrum disorders (ASDs) decreased frontal-posterior functional connectivity is a persistent finding. However, the picture of the default mode network (DMN) hypoconnectivity remains incomplete. In addition, the functional connectivity analyses have been shown to be susceptible even to subtle motion. DMN hypoconnectivity in ASD has been specifically called for re-evaluation with stringent motion correction, which we aimed to conduct by so-called scrubbing. A rich set of default mode subnetworks can be obtained with high dimensional group independent component analysis (ICA) which can potentially provide more detailed view of the connectivity alterations. We compared the DMN connectivity in high-functioning adolescents with ASDs to typically developing controls using ICA dual-regression with decompositions from typical to high dimensionality. Dual-regression analysis within DMN subnetworks did not reveal alterations but connectivity between anterior and posterior DMN subnetworks was decreased in ASD. The results were very similar with and without motion scrubbing thus indicating the efficacy of the conventional motion correction methods combined with ICA dual-regression. Specific dissociation between DMN subnetworks was revealed on high ICA dimensionality, where networks centered at the medial prefrontal cortex and retrosplenial cortex showed weakened coupling in adolescents with ASDs compared to typically developing control participants. Generally the results speak for disruption in the anterior-posterior DMN interplay on the network level whereas local functional connectivity in DMN seems relatively unaltered

    Maternal prepregnancy body mass index and offspring white matter microstructure: results from three birth cohorts

    Get PDF
    Prepregnancy maternal obesity is a global health problem and has been associated with offspring metabolic and mental ill-health. However, there is a knowledge gap in understanding potential neurobiological factors related to these associations. This study explored the relation between maternal prepregnancy body mass index (BMI) and offspring brain white matter microstructure at the age of 6, 10, and 26 years in three independent cohorts. Maternal BMI was associated with higher FA and lower MD in multiple brain tracts in offspring aged 10 and 26 years, but not at 6 years of age. Future studies should examine whether our observations can be replicated and explore the potential causal nature of the findings.This work was supported by the European Union’s Horizon 2020 research and innovation program [grant agreement no. 633595 DynaHEALTH] and no. 733206 LifeCycle], the Netherlands Organization for Health Research and Development [ZONMW Vici project 016.VICI.170.200]. The PREOBE cohort was funded by Spanish Ministry of Innovation and Science. Junta de Andalucía: Excellence Projects (P06-CTS-02341) and Spanish Ministry of Economy and Competitiveness (BFU2012-40254-C03-01). The first phase of the Generation R Study is made possible by financial support from the Erasmus Medical Centre, the Erasmus University, and the Netherlands Organization for Health Research and Development (ZonMW, grant ZonMW Geestkracht 10.000.1003). The Northern Finland Birth Cohort 1986 is funded by University of Oulu, University Hospital of Oulu, Academy of Finland (EGEA), Sigrid Juselius Foundation, European Commission (EURO-BLCS, Framework 5 award QLG1-CT-2000-01643), NIH/NIMH (5R01MH63706:02

    Brain response to facial expressions in adults with adolescent ADHD

    No full text
    Abstract The symptoms of ADHD tend to have continuity to adulthood even though the diagnostic criteria were no longer fulfilled. The aim of our study was to find out possible differences in BOLD signal in the face-processing network between adults with previous ADHD (pADHD, n = 23) and controls (n = 29) from the same birth cohort when viewing dynamic facial expressions. The brain imaging was performed using a General Electric Signa 1.5 Tesla HDX. Dynamic facial expression stimuli included happy and fearful expressions. The pADHD group demonstrated elevated activity in the left parietal area during fearful facial expression. The Network Based Statistics including multiple areas demonstrated higher functional connectivity in attention related network during visual exposure to happy faces in the pADHD group. Conclusions: We found differences in brain responses to facial emotional expressions in individuals with previous ADHD compared to control group in a number of brain regions including areas linked to processing of facial emotional expressions and attention. This might indicate that although these individuals no longer fulfill the ADHD diagnosis, they exhibit overactive network properties affecting facial processing

    Cerebral haemodynamic effects in the human brain during radiation therapy for brain cancer

    No full text
    Abstract Radiotherapy is already well-established and an effective form of treatment for many cancers, especially for brain tumors. Currently, the clinical efficacy of a treatment, however, can only be established based on clinical or radiological responses observed after a significant period of time following the single irradiations during radiotherapy course. On the other hand, the radiotherapy dose is limited by its toxicity to surrounding healthy tissues. Particularly, radiation to brain tumors may sub-acutely or chronically affect cognition and cause fatigue even with conventional doses. However, there is currently no on-line and safe method to monitor the effects of radiation to the brain during the irradiation. In our project, we aim to develop an on-line method to monitor effects in brain tissue that correlate with the radiation dose in radiotherapy. In this case study, we use functional near-infrared spectroscopy (fNIRS) and study possible temporal effects in cerebral haemodynamics during irradiations of whole-brain radiotherapy (WBRT). fNIRS is safe for the patient, it can be used noninvasively and also in demanding environments, such as in radiotherapy treatment rooms during irradiation, and thus could be in future potential technique to be utilized for monitoring tailored radiotherapy

    Cerebral tissue oxygenation response to brain irradiation measured during clinical radiotherapy

    No full text
    Abstract Significance: Cancer therapy treatments produce extensive changes in the physiological and morphological properties of tissues, which are also individual dependent. Currently, a key challenge involves developing more tailored cancer therapy, and consequently, individual biological response measurement during therapy, such as tumor hypoxia, is of high interest. This is the first time human cerebral haemodynamics and cerebral tissue oxygenation index (TOI) changes were measured during the irradiation in clinical radiotherapy and functional near-infrared spectroscopy (fNIRS) technique was demonstrated as a feasible technique for clinical use in radiotherapy, based on 34 online patient measurements. Aim: Our aim is to develop predictive biomarkers and noninvasive real-time methods to establish the effect of radiotherapy during treatment as well as to optimize radiotherapy dose planning for individual patients. In particular, fNIRS-based technique could offer an effective and clinically feasible online technique for continuous monitoring of brain tissue hypoxia and responses to chemo- and radiotherapy, which involves modulating tumor oxygenation to increase or decrease tumor hypoxia. We aim to show that fNIRS is feasible for repeatability measuring in patient radiotherapy, the temporal alterations of tissue oxygenation induced by radiation. Approach: Fiber optics setup using multiwavelength fNIRS was built and combined with a medical linear accelerator to measure cerebral tissue oxygenation changes during the whole-brain radiotherapy treatment, where the radiation dose is given in whole brain area only preventing dosage to eyes. Correlation of temporal alterations in cerebral haemodynamics and TOI response to brain irradiation was quantified. Results: Online fNIRS patient measurement of cerebral haemodynamics during clinical brain radiotherapy is feasible in clinical environment, and results based on 34 patient measurements show strong temporal alterations in cerebral haemodynamics and decrease in TOI during brain irradiation and confirmed the repeatability. Our proof-of-concept study shows evidently that irradiation causes characteristic immediate changes in brain tissue oxygenation. Conclusions: In particular, TOI seems to be a sensitive parameter to observe the tissue effects of radiotherapy. Monitoring the real-time interactions between the subjected radiation dose and corresponding haemodynamic effects may provide important tool for the researchers and clinicians in the field of radiotherapy. Eventually, presented fNIRS technique could be used for improving dose planning and safety control for individual patients
    corecore