16 research outputs found

    A toolkit of mechanism and context independent widgets

    Get PDF
    Most human-computer interfaces are designed to run on a static platform (e.g. a workstation with a monitor) in a static environment (e.g. an office). However, with mobile devices becoming ubiquitous and capable of running applications similar to those found on static devices, it is no longer valid to design static interfaces. This paper describes a user-interface architecture which allows interactors to be flexible about the way they are presented. This flexibility is defined by the different input and output mechanisms used. An interactor may use different mechanisms depending upon their suitability in the current context, user preference and the resources available for presentation using that mechanism

    Systems, interactions and macrotheory

    Get PDF
    A significant proportion of early HCI research was guided by one very clear vision: that the existing theory base in psychology and cognitive science could be developed to yield engineering tools for use in the interdisciplinary context of HCI design. While interface technologies and heuristic methods for behavioral evaluation have rapidly advanced in both capability and breadth of application, progress toward deeper theory has been modest, and some now believe it to be unnecessary. A case is presented for developing new forms of theory, based around generic “systems of interactors.” An overlapping, layered structure of macro- and microtheories could then serve an explanatory role, and could also bind together contributions from the different disciplines. Novel routes to formalizing and applying such theories provide a host of interesting and tractable problems for future basic research in HCI

    Influence of gellant and drag-reducing agent on the ignition characteristics of typical liquid hydrocarbon fuels

    No full text
    This experimental research studies the ignition of fuel particles (droplets) in a high-temperature air medium. Two groups of fuel compositions are considered: the first one is based on kerosene, the second one is based on diesel fuel, with gellant (silicon dioxide) and drag-reducing agent (polyhexene) added to them, respectively. The following compositions were used: K-100 (100% kerosene), K-99 (1 wt% silicon dioxide), K-95 (5 wt% silicon dioxide), K-90 (10 wt% silicon dioxide), K-85 (15 wt% silicon dioxide), D-100 (100% diesel fuel), D-FTA (0.04 wt% ForeFTA drag-reducing agent according to TU 2458-002-10022,712-2015), and D-FTA02 (0.04 wt% ForeFTA-02 drag-reducing agent according to TU 20.59.42-015-10022,712-2018). Fuels K-100, D-100, D-FTA, and D-FTA02 behave like Newtonian fluids with constant viscosity vs. shear rate. Kerosene gels K-99 and K-95 behave like non-Newtonian fluids, exhibiting a shear-thinning property, and decrease in viscosity with an increase in the shear rate. Kerosene gels K-90 and K-85 are incapable of flowing and appear to be “solids”. Single fuel particles (droplets) were ignited in a heated air medium at temperatures 873–1273 K. Using a system of high-speed video recording, we established that at various initial temperatures of the compositions, different in the concentrations and appearance of fuel components, an identical set of physical and chemical processes occurs during the induction period, whose duration corresponds to the ignition delay time. These are roughly the same as the processes, occurring when liquid fuels are ignited in a normal state (without gellants or agents). The lowest temperature of heated air, at which fuel compositions are ignited, is 873 K. This value can be notionally referred to as the auto-ignition temperature of fuel when conducting the experiments under the said conditions. The ignition delay times for K-100 and K-99 droplets are identical, whereas for K-95, K-90, and K-85, they are 10–30% longer than the induction period for liquid fuel droplets in a normal state. Compositions based on diesel fuel with 0.04% of drag-reducing agent feature puffing of droplets, when heated, though this process does not affect ignition delay times as the main process characteristic

    Ignition mechanism and characteristics of gel fuels based on oil-free and oil-filled cryogels with fine coal particles

    No full text
    Methods of preparing heterogeneous gel fuels have been elaborated on the basis of oil-free and oil-filled cryogels, containing coal dust particles with a size no more than 140 μm. Mechanical properties of 20-mm fuel pellets have been analyzed. The ignition mechanisms of heterogeneous gel fuels have been experimentally discovered in a high-temperature (600–1000 °C) oxidizer medium, and the influence of the initial fuel temperature (from −85 to 20 °C) on the fuel ignition characteristics has been researched. The multi-component composition of the oil-filled cryogels with coal dust particles is the reason for microexplosions that leads to the fuel sample dispersion and intensification both the ignition and burnout. Such fuel compositions are characterized by 1.5–2-fold lower ignition delay times (1–6 s vs. 2–12 s) than the compositions based on cryogels containing only coal particles, other things being equal

    Oil-filled cryogels: new approach for storage and utilization of liquid combustible wastes

    No full text
    A method of preparing oil-filled cryogels on the basis of an aqueous solution of poly(vinyl alcohol) (PVA) has been elaborated. The stability of primary oil emulsions and their rheological properties were analyzed for 30 days, as well as the mechanical properties of gel fuel pellets (obtained after 15 cycles of freezing/thawing of oil emulsions) with size of 20 mm for a group of compositions: 100-20 vol % aqueous solution of PVA (5, 10 wt %) + 0-80 vol % oil. The rheological behavior of non-Newtonian oil emulsions is described by the Herschel-Bulkley model. The elastic moduli and the tensile strength of fuel pellets of different component compositions range from 0.7 to 7.6 kPa and from 2.5 to 60 kPa, respectively. The oleophilic properties are more distinct for gel fuel prepared from oil emulsions with a higher content of the dispersed phase and lower concentrations of the polymer in the dispersion medium. The ignition mechanism and combustion characteristics have been established for processes occurring under the conditions of a radiant heat supply. Gel fuels, unlike combustible liquids, are characterized by a longer induction period, but a multicomponent structure of fuel caused microexplosions that enhance the combustion process

    Humor modeling in the interface

    No full text
    Humor is a multi-disciplinary field of research. People have been working on humor in many fields of research, such as psychology, philosophy and linguistics, sociology and literature. Especially in the context of computer science (or Artificial Intelligence) humor research aims at modeling humor in a computationally tractable way. Having computational models of humor allows interface designers to have the computer generate and interpret humor when interacting with users. Being able to recognize a user’s frustration can be useful; however, preventing it whenever possible by an adequate use of humor can be useful as well
    corecore