8 research outputs found

    Sentinel surveillance and epidemiology of Clostridioides difficile in Denmark, 2016 to 2019

    Get PDF
    BACKGROUND: Since 2008, Danish national surveillance of Clostridioides difficile has focused on binary toxin-positive strains in order to monitor epidemic types such as PCR ribotype (RT) 027 and 078. Additional surveillance is needed to provide a more unbiased representation of all strains from the clinical reservoir. AIM: Setting up a new sentinel surveillance scheme for an improved understanding of type distribution relative to time, geography and epidemiology, here presenting data from 2016 to 2019. METHODS: For 2─4 weeks in spring and autumn each year between 2016 and 2019, all 10 Danish Departments of Clinical Microbiology collected faecal samples containing toxigenic C. difficile. Isolates were typed at the national reference laboratory at Statens Serum Institut. The typing method in 2016–17 used tandem-repeat-sequence typing, while the typing method in 2018–19 was whole genome sequencing. RESULTS: During the study period, the sentinel surveillance scheme included ca 14–15% of all Danish cases of C. difficile infections. Binary toxin-negative strains accounted for 75% and 16 of the 20 most prevalent types. The most common sequence types (ST) were ST2/13 (RT014/020) (19.5%), ST1 (RT027) (10.8%), ST11 (RT078) (6.7%), ST8 (RT002) (6.6%) and ST6 (RT005/117) (5.1%). The data also highlighted geographical differences, mostly related to ST1 and temporal decline of ST1 (p = 0.0008) and the increase of ST103 (p = 0.002), ST17 (p = 0.004) and ST37 (p = 0.003), the latter three binary toxin-negative. CONCLUSION: Sentinel surveillance allowed nationwide monitoring of geographical differences and temporal changes in C. difficile infections in Denmark, including emerging types, regardless of binary toxin status

    A 5700 year-old human genome and oral microbiome from chewed birch pitch

    Get PDF
    Abstract: The rise of ancient genomics has revolutionised our understanding of human prehistory but this work depends on the availability of suitable samples. Here we present a complete ancient human genome and oral microbiome sequenced from a 5700 year-old piece of chewed birch pitch from Denmark. We sequence the human genome to an average depth of 2.3× and find that the individual who chewed the pitch was female and that she was genetically more closely related to western hunter-gatherers from mainland Europe than hunter-gatherers from central Scandinavia. We also find that she likely had dark skin, dark brown hair and blue eyes. In addition, we identify DNA fragments from several bacterial and viral taxa, including Epstein-Barr virus, as well as animal and plant DNA, which may have derived from a recent meal. The results highlight the potential of chewed birch pitch as a source of ancient DNA

    Genomic ancestry, diet and microbiomes of Upper Palaeolithic hunter-gatherers from San Teodoro cave (Sicily, Italy)

    No full text
    Recent improvements in the analysis of ancient biomolecules from human remains and associated dental calculus have provided new insights into the prehistoric diet and genetic diversity of our species. Here we present a multi-omics study, integrating metagenomic and proteomic analyses of dental calculus, and human ancient DNA analysis of the petrous bones of two post-Last Glacial Maximum (LGM) individuals from San Teodoro cave (Italy), to reconstruct their lifestyle and the post-LGM resettlement of Europe. Our analyses show genetic homogeneity in Sicily during the Palaeolithic, representing a hitherto unknown Italian genetic lineage within the previously identified Villabruna cluster. We argue that this lineage took refuge in Italy during the LGM, followed by a subsequent spread to central-western Europe. Analysis of dental calculus showed a diet rich in animal proteins which is also reflected on the oral microbiome composition. Our results demonstrate the power of this approach in the study of prehistoric humans and will enable future research to reach a more holistic understanding of the population dynamics and ecology

    Diverse variola virus (smallpox) strains were widespread in northern Europe in the Viking Age

    No full text
    Humans have a notable capacity to withstand the ravages of infectious diseases. Smallpox killed millions of people but drove Jenner's invention of vaccination, which eventually led to the annihilation of this virus, declared in 1980. To investigate the history of smallpox, Mühlemann et al. obtained high-throughput shotgun sequencing data from 1867 human remains ranging from >31,000 to 150 years ago (see the Perspective by Alcamí). Thirteen positive samples emerged, 11 of which were northern European Viking Age people (6th to 7th century CE). Although the sequences were patchy and incomplete, four could be used to infer a phylogenetic tree. This showed distinct Viking Age lineages with multiple gene inactivations. The analysis pushes back the date of the earliest variola infection in humans by ∼1000 years and reveals the existence of a previously unknown virus clade
    corecore