42 research outputs found

    The Possibility of Replacing Puddled Transplanted Flooded Rice with Direct-Seeded Rice in Central China: A review

    Get PDF
    Oral Session

    Research Progress and the Limiting Factors of Direct Seeding Rice in Central China

    Get PDF
    Symposium paper Part 2: Frontiers of sustainable rice production syste

    Lower Global Warming Potential and Higher Yield of Wet Direct-Seeded Rice in Central China

    Get PDF
    Poster Session

    Effect of different rice planting methods on the water, energy and carbon footprints of subsequent wheat

    Get PDF
    The rice-wheat rotation system is an important planting system in the middle and lower reaches of the Yangtze River. Studies on the effects of different rice planting methods on the water, energy, and carbon footprints of subsequent wheat have rarely been reported. In this study, the effects of different rice cultivation practices on the water, energy, and carbon footprints of subsequent wheat were investigated among different rice-wheat rotation systems including dry direct-seeded rice (DSR)-wheat rotation, wet direct-seeded rice (WSR)-wheat rotation and transplanted rice(TPR)-wheat rotation. Results showed that the yield of wheat after DSR was 8,552 kg ha−1, which was 14.61 and 4.72% higher than the yields after WSR and TPR, respectively. In addition, the water and carbon footprints of wheat after DSR were lower than those after WSR and TPR, while its energy and carbon production efficiencies and net ecosystem economic benefits were higher than those after WSR and TPR. Notably, the use of fertilizers and fuel are the two major contributors to the high energy inputs and greenhouse gas emissions in wheat production. In summary, wheat after DSR has higher ecological and economic benefits, and we recommend that it be promoted as the preferred wheat planting model in rice-wheat rotation areas

    Ammonia Volatilization from Urea-Application Influenced Germination and Early Seedling Growth of Dry Direct-Seeded Rice

    Get PDF
    Poor seed germination and early seedling growth associated with urea-induced soil ammonia volatilization are major constraints in the adoption of dry direct-seeded rice. To directly examine soil ammonia volatilization and its damage to seed germination and early seedling growth of dry direct-seeded rice when urea is applied at seeding, two Petri-dish incubation experiments and a field experiment were conducted. Ammonia volatilization due to urea application significantly reduced seed germination and early seedling growth of dry direct-seedling rice. NBPT significantly reduced ammonia volatilization following urea application. The application of ammonium sulfate, instead of urea at seeding, may mitigate poor crop establishment of dry direct-seeded rice. Root growth of dry direct-seeded rice was more seriously inhibited by soil ammonia volatilization than that of shoot. Results suggest that roots are more sensitive to soil ammonia toxicity than shoots in dry direct-seeded rice system when N is applied as urea at seeding

    Effects of source-sink regulation and nodal position of the main crop on the sprouting of regenerated buds and grain yield of ratoon rice

    Get PDF
    Ratoon rice (Oryza sativa L.) is the production of a second season rice that utilizes the dormant buds surviving on the stubble left behind after the harvest of the main crop. However, the sprouting mechanism of regenerated buds at separate nodes is rarely reported. Field experiments were conducted to examine the effects of leaf-cutting and spikelet thinning on the sprouting of regenerated buds at the separate node, the contributions of regenerated panicles at the separate node to the total grain yield in the ratoon crop, and the associated mechanism. The results showed that the contribution of separate node yields to the total grain yield in the ratoon crop was D2 (panicles regenerated from the 2nd node from the top) >D3 (panicles regenerated from the 3rd node from the top) >D4 (panicles regenerated from the lower nodes below the 3rd node), and the contribution of D2 and D3 made up approximately 80% of the total yield in the ratoon crop. In addition, the effect of leaf-cutting treatment and spikelet-thinning treatment on the grain yield of ratoon season was mainly realized by regulating the relative contribution rate of D2 and D4 grain yield to the total yield of ratoon season. Further analysis indicated that the sprouting of regenerated buds at the D2 node was mainly affected by the content of CTK, while D3 was mainly regulated by GAs and CTK, and D4 was mainly regulated by ABA and CTK. However, only the CTK content in stems and buds was positively correlated with single bud length and bud number at each nodes. These results indicated that CTK might be the main signal regulating the sprouting of regenerated buds and the grain yield at separate nodes, which might change the transport of assimilates to stems and buds

    Solophos fertilizer improved rice plant growth in aerobic soil

    Get PDF
    Yield decline of continuous monocropping of aerobic rice is the major constraint to the wide adoption of aerobic rice technology. This study was conducted to determine if solophos fertilizer could be used to reverse the yield decline of this cropping system using pot and micro-plot experiments. The soil for the pot experiment was collected from a field where aerobic rice has been grown continuously for 11 seasons at the IRRI farm. Four rates (4, 6, 8, and 10gpot^) of solophos application were used in the pot experiment. Micro-plots (1×1m) were installed in the field experiment where the 12^-season aerobic rice was grown. Treatments in the micro-plots were with and without additional solophos application. Solophos rate was 4, 407.5kg ha^ which was equivalent to 10g solophos pot^ used in the pot experiment. An improved upland variety, Apo, was used for both pot and micro-plot experiments. Application of solophos significantly increased plant height, stem number, leaf area, chlorophyll meter reading, root dry weight, and total biomass in the pot experiment. The growth en-hancement by solophos application was also observed in the micro-plot experiment under the field conditions. Photosynthetic rate and spikelet number per m^2 were increased by solophos application in the micro-plot experiment. Although the mechanism of growth promotion by solophos application is not clear, this study suggested that solophos application could be used as one of crop management options that could minimize the yield decline of continuous monocropping of aerobic rice.Original Pape

    Rice yield penalty and quality deterioration is associated with failure of nitrogen uptake from regreening to panicle initiation stage under salinity

    Get PDF
    In recent years, the development and utilization of saline land for rice cultivation have effectively expanded grain productivity. Rice is a salt-sensitive crop, and the increasing salinity problem threatens rice yield and quality. Therefore, we conducted open field experiments to study the effect of salinity on different growth stages of rice. Irrigating saline treatment was conducted at three different growth stages: irrigating saline from the regreening stage to the panicle initiation stage (S1), irrigating saline from the panicle initiation stage to the flowering stage (S2), and irrigating saline from the flowering stage to the maturity stage (S3). Each treatment period lasted for about 30 days. At the same time, irrigating saline water from the regreening stage to the maturity stage (S4) treatment was added in 2022 to explore the performance of salt stress during the whole growth period of rice. Based on the treatment of these different saline irrigation growth periods, three saline concentrations were incorporated, including salinity 0‰ (T1), 3‰ (T2), and 6‰ (T3) concentrations. No irrigating saline during the whole growth period was also used as a control (CK). The results indicated that rice grain yield and quality were most sensitive to saline treatment during S1 among the three stress periods. At the S1 stage, salinity mainly reduced the nitrogen uptake, resulting in stunted plant growth, reducing tillering, yield, and yield components, and deteriorating the rice quality. Compared to the control, IEN (grain yield over the total amount of N uptake in plants at maturity) was more sensitive at the S1 stage than S2 and S3 stages under salinity. Furthermore, the findings of our study suggest that under salinity, rice growth is not only directly affected by the higher sodium (Na+) content in plants, but the higher concentration of Na+ reduced the ability of plants to uptake nitrogen. Thus, more attention should be paid to the field management of the S1 stage, the most sensitive stage during rice cultivation in salinized areas. It is necessary to avoid salt damage to rice during this period and ensure irrigation with precious freshwater resources

    Erratum to “Water Management Practices Affect Arsenic and Cadmium Accumulation in Rice Grains”

    Get PDF
    Cadmium (Cd) and arsenic (As) accumulation in rice grains is a great threat to its productivity, grain quality, and thus human health. Pot and field studies were carried out to unravel the effect of different water management practices (aerobic, aerobic-flooded, and flooded) on Cd and As accumulation in rice grains of two different varieties. In pot experiment, Cd or As was also added into the soil as treatment. Pots without Cd or As addition were maintained as control. Results indicated that water management practices significantly influenced the Cd and As concentration in rice grains and aerobic cultivation of rice furnished less As concentration in its grains. Nonetheless, Cd concentration in this treatment was higher than the grains of flooded rice. Likewise, in field study, aerobic and flooded rice cultivation recorded higher Cd and As concentration, respectively. However, growing of rice in aerobic-flooded conditions decreased the Cd concentration by 9.38 times on average basis as compared to aerobic rice. Furthermore, this treatment showed 28% less As concentration than that recorded in flooded rice cultivation. The results suggested that aerobic-flooded cultivation may be a promising strategy to reduce the Cd and As accumulations in rice grains simultaneously
    corecore