

Lower Global Warming Potential and Higher Yield of Wet Direct-Seeded Rice in Central China

22

著者	WANG Weiqin, TAO Ye, NIE Lixiao
journal or	Journal of Integrated Field Science
publication title	
volume	15
page range	90-90
year	2018-10
URL	http://hdl.handle.net/10097/00124031

Poster Session

p15. Lower Global Warming Potential and Higher Yield of Wet Direct-Seeded Rice in Central China

Weigin WANG¹, Ye TAO¹ and Lixiao NIE^{1,2}

¹MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University ²Hubei Collaborative Innovation Center for Grain Industry, Yangtze University

Direct-seeded rice is a promising option because it saves water and labor, and it increases productivity. Nonetheless, few studies have evaluated the transition from traditionally transplanted rice to direct-seeded rice. Here we compared yield, water productivity and greenhouse gas emissions of dry direct-seeded rice, wet direct-seeded rice and transplanted rice in Central China in two consecutive years. We grew four rice cultivars: Huanghuazhan, LvdaoQ7, Yangliangyou6 and Yliangyou1. We measured grain yield, yield components, water consumption, water productivity, and greenhouse gas emissions. Our results show that the grain yield of wet direct-seeded rice was 10.8 % higher than that of transplanted rice, when averaged across cultivars and both years. Grain yield of dry direct-seeded rice and transplanted rice was similar. Water productivity of dry direct-seeded rice was 11.6% higher than that in transplanted rice. Water productivity of wet direct-seeded rice was 13.4% higher than that in transplanted rice. Global warming potential was 76.2 % lower for dry direct-seeded rice and 60.4 % lower for wet direct-seeded rice, than for transplanted rice. Wet direct-seeded rice is the best system for Central China due to higher grain yield and water productivity, and lower global warming potential. Dry direct-seeded rice may also be suitable for some regions where water is scarce for soil puddling during land preparation.

keywords: dry direct-seeded rice, wet direct-seeded rice, transplanted rice, grain yield, water productivity, greenhouse gas emission