5 research outputs found

    Extend Wave Function Collapse to Large-Scale Content Generation

    Full text link
    Wave Function Collapse (WFC) is a widely used tile-based algorithm in procedural content generation, including textures, objects, and scenes. However, the current WFC algorithm and related research lack the ability to generate commercialized large-scale or infinite content due to constraint conflict and time complexity costs. This paper proposes a Nested WFC (N-WFC) algorithm framework to reduce time complexity. To avoid conflict and backtracking problems, we offer a complete and sub-complete tileset preparation strategy, which requires only a small number of tiles to generate aperiodic and deterministic infinite content. We also introduce the weight-brush system that combines N-WFC and sub-complete tileset, proving its suitability for game design. Our contribution addresses WFC's challenge in massive content generation and provides a theoretical basis for implementing concrete games.Comment: This paper is accepted by IEEE Conference on Games 2023 (nomination of the Best Paper Award

    Temporal-spatial Correlation Attention Network for Clinical Data Analysis in Intensive Care Unit

    Full text link
    In recent years, medical information technology has made it possible for electronic health record (EHR) to store fairly complete clinical data. This has brought health care into the era of "big data". However, medical data are often sparse and strongly correlated, which means that medical problems cannot be solved effectively. With the rapid development of deep learning in recent years, it has provided opportunities for the use of big data in healthcare. In this paper, we propose a temporal-saptial correlation attention network (TSCAN) to handle some clinical characteristic prediction problems, such as predicting death, predicting length of stay, detecting physiologic decline, and classifying phenotypes. Based on the design of the attention mechanism model, our approach can effectively remove irrelevant items in clinical data and irrelevant nodes in time according to different tasks, so as to obtain more accurate prediction results. Our method can also find key clinical indicators of important outcomes that can be used to improve treatment options. Our experiments use information from the Medical Information Mart for Intensive Care (MIMIC-IV) database, which is open to the public. Finally, we have achieved significant performance benefits of 2.0\% (metric) compared to other SOTA prediction methods. We achieved a staggering 90.7\% on mortality rate, 45.1\% on length of stay. The source code can be find: \url{https://github.com/yuyuheintju/TSCAN}

    Highly efficient and selective hydrogenation of quinolines at room temperature over Ru@NC-500 catalyst

    No full text
    Selective hydrogenation of quinolines into 1,2,3,4-tetrahydroquinolines under mild conditions holds tremendous promise for the green synthesis of a multitude of fine chemicals. Herein, we describe nitrogen-doped carbon supported ruthenium nanoparticles were robust for the mide and selective hydrogenation of quinolines to the corresponding 1,2,3,4-tetrahydroquinolines with both excellent activity and selectivity at 30 similar to 50 degrees C and 10 bar H-2
    corecore