6 research outputs found

    Self-Patterned Nanoparticle Layers for Vertical Interconnects: Application in Tandem Solar Cells

    No full text
    We demonstrate self-patterned insulating nanoparticle layers to define local electrical interconnects in thin-film electronic devices. We show this with thin-film silicon tandem solar cells, where we introduce between the two component cells a solution-processed SiO<sub>2</sub> nanoparticle layer with local openings to allow for charge transport. Because of its low refractive index, high transparency, and smooth surface, the SiO<sub>2</sub> nanoparticle layer acts as an excellent intermediate reflector allowing for efficient light management

    Ligand Efficiency Driven Design of New Inhibitors of Mycobacterium tuberculosis Transcriptional Repressor EthR Using Fragment Growing, Merging, and Linking Approaches

    No full text
    Tuberculosis remains a major cause of mortality and morbidity, killing each year more than one million people. Although the combined use of first line antibiotics (isoniazid, rifampicin, pyrazinamide, and ethambutol) is efficient to treat most patients, the rapid emergence of multidrug resistant strains of Mycobacterium tuberculosis stresses the need for alternative therapies. Mycobacterial transcriptional repressor EthR is a key player in the control of second-line drugs bioactivation such as ethionamide and has been shown to impair the sensitivity of the human pathogen Mycobacterium tuberculosis to this antibiotic. As a way to identify new potent ligands of this protein, we have developed fragment-based approaches. In the current study, we combined surface plasmon resonance assay, X-ray crystallography, and ligand efficiency driven design for the rapid discovery and optimization of new chemotypes of EthR ligands starting from a fragment. The design, synthesis, and in vitro and ex vivo activities of these compounds will be discussed

    Ethionamide Boosters. 2. Combining Bioisosteric Replacement and Structure-Based Drug Design To Solve Pharmacokinetic Issues in a Series of Potent 1,2,4-Oxadiazole EthR Inhibitors

    No full text
    Mycobacterial transcriptional repressor EthR controls the expression of EthA, the bacterial monooxygenase activating ethionamide, and is thus largely responsible for the low sensitivity of the human pathogen <i>Mycobacterium tuberculosis</i> to this antibiotic. We recently reported structure–activity relationships of a series of 1,2,4-oxadiazole EthR inhibitors leading to the discovery of potent ethionamide boosters. Despite high metabolic stability, pharmacokinetic evaluation revealed poor mice exposure; therefore, a second phase of optimization was required. Herein a structure–property relationship study is reported according to the replacement of the two aromatic heterocycles: 2-thienyl and 1,2,4-oxadiazolyl moieties. This work was done using a combination of structure-based drug design and in vitro/ex vivo evaluations of ethionamide boosters on the targeted protein EthR and on the human pathogen <i>Mycobacterium tuberculosis</i>. Thanks to this process, we identified compound <b>42</b> (BDM41906), which displays improved efficacy in addition to high exposure to mice after oral administration
    corecore