2,764 research outputs found

    Using numerical models of bow shocks to investigate the circumstellar medium of massive stars

    Full text link
    Many massive stars travel through the interstellar medium at supersonic speeds. As a result they form bow shocks at the interface between the stellar wind. We use numerical hydrodynamics to reproduce such bow shocks numerically, creating models that can be compared to observations. In this paper we discuss the influence of two physical phenomena, interstellar magnetic fields and the presence of interstellar dust grains on the observable shape of the bow shocks of massive stars. We find that the interstellar magnetic field, though too weak to restrict the general shape of the bow shock, reduces the size of the instabilities that would otherwise be observed in the bow shock of a red supergiant. The interstellar dust grains, due to their inertia can penetrate deep into the bow shock structure of a main sequence O-supergiant, crossing over from the ISM into the stellar wind. Therefore, the dust distribution may not always reflect the morphology of the gas. This is an important consideration for infrared observations, which are dominated by dust emission. Our models clearly show, that the bow shocks of massive stars are useful diagnostic tools that can used to investigate the properties of both the stellar wind as well as the interstellar medium.Comment: 7 pages, 4 figures, to be published in the Journal of Physics: Conference Series (JPCS) as part of the proceedings of the 13th Annual International Astrophysics Conferenc

    Using machine learning to classify the diffuse interstellar bands

    Full text link
    Using over a million and a half extragalactic spectra we study the correlations of the Diffuse Interstellar Bands (DIBs) in the Milky Way. We measure the correlation between DIB strength and dust extinction for 142 DIBs using 24 stacked spectra in the reddening range E(B-V) < 0.2, many more lines than ever studied before. Most of the DIBs do not correlate with dust extinction. However, we find 10 weak and barely studied DIBs with correlations that are higher than 0.7 with dust extinction and confirm the high correlation of additional 5 strong DIBs. Furthermore, we find a pair of DIBs, 5925.9A and 5927.5A which exhibits significant negative correlation with dust extinction, indicating that their carrier may be depleted on dust. We use Machine Learning algorithms to divide the DIBs to spectroscopic families based on 250 stacked spectra. By removing the dust dependency we study how DIBs follow their local environment. We thus obtain 6 groups of weak DIBs, 4 of which are tightly associated with C2 or CN absorption lines.Comment: minor changes, MNRAS accepte

    A survey of diffuse interstellar bands in the Andromeda galaxy: optical spectroscopy of M31 OB stars

    Full text link
    We present the largest sample to-date of intermediate-resolution blue-to-red optical spectra of B-type supergiants in M31 and undertake the first survey of diffuse interstellar bands (DIBs) in this galaxy. Spectral classifications, radial velocities and interstellar reddenings are presented for 34 stars in three regions of M31. Radial velocities and equivalent widths are given for the 5780 and 6283 DIBs towards 11 stars. Equivalent widths are also presented for the following DIBs detected in three sightlines in M31: 4428, 5705, 5780, 5797, 6203, 6269, 6283, 6379, 6613, 6660, and 6993. All of these M31 DIB carriers reside in clouds at radial velocities matching those of interstellar Na I and/or H I. The relationships between DIB equivalent widths and reddening (E(B-V)) are consistent with those observed in the local ISM of the Milky Way. Many of the observed sightlines show DIB strengths (per unit reddening) which lie at the upper end of the range of Galactic values. DIB strengths per unit reddening are found (with 68% confidence), to correlate with the interstellar UV radiation field strength. The strongest DIBs are observed where the interstellar UV flux is lowest. The mean Spitzer 8/24 micron emission ratio in our three fields is slightly lower than that measured in the Milky Way, but we identify no correlation between this ratio and the DIB strengths in M31. Interstellar oxygen abundances derived from the spectra of three M31 H II regions in one of the fields indicate that the average metallicity of the ISM in that region is 12 + log[O/H] = 8.54 +- 0.18, which is approximately equal to the value in the solar neighbourhood
    corecore