14 research outputs found
Fatty acid nitroalkenes ameliorate glucose intolerance and pulmonary hypertension in high-fat diet-induced obesity
Aims Obesity is a risk factor for diabetes and cardiovascular diseases, with the incidence of these disorders becoming epidemic. Pathogenic responses to obesity have been ascribed to adipose tissue (AT) dysfunction that promotes bioactive mediator secretion from visceral AT and the initiation of pro-inflammatory events that induce oxidative stress and tissue dysfunction. Current understanding supports that suppressing pro-inflammatory and oxidative events promotes improved metabolic and cardiovascular function. In this regard, electrophilic nitro-fatty acids display pleiotropic anti-inflammatory signalling actions. Methods and results It was hypothesized that high-fat diet (HFD)-induced inflammatory and metabolic responses, manifested by loss of glucose tolerance and vascular dysfunction, would be attenuated by systemic administration of nitrooctadecenoic acid (OA-NO2). Male C57BL/6j mice subjected to a HFD for 20 weeks displayed increased adiposity, fasting glucose, and insulin levels, which led to glucose intolerance and pulmonary hypertension, characterized by increased right ventricular (RV) end-systolic pressure (RVESP) and pulmonary vascular resistance (PVR). This was associated with increased lung xanthine oxidoreductase (XO) activity, macrophage infiltration, and enhanced expression of pro-inflammatory cytokines. Left ventricular (LV) end-diastolic pressure remained unaltered, indicating that the HFD produces pulmonary vascular remodelling, rather than LV dysfunction and pulmonary venous hypertension. Administration of OA-NO2 for the final 6.5 weeks of HFD improved glucose tolerance and significantly attenuated HFD-induced RVESP, PVR, RV hypertrophy, lung XO activity, oxidative stress, and pro-inflammatory pulmonary cytokine levels. Conclusions These observations support that the pleiotropic signalling actions of electrophilic fatty acids represent a therapeutic strategy for limiting the complex pathogenic responses instigated by obesity.Fil: Kelley, Eric E.. University of Pittsburgh; Estados UnidosFil: Baust, Jeff. University of Pittsburgh; Estados UnidosFil: Bonacci, Gustavo Roberto. University of Pittsburgh; Estados Unidos. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Golin Bisello, Franca. University of Pittsburgh; Estados UnidosFil: Devlin, Jason E.. University of Pittsburgh; Estados UnidosFil: Croix, Claudette M. St.. University of Pittsburgh; Estados UnidosFil: Watkins, Simon C.. University of Pittsburgh; Estados UnidosFil: Gor, Sonia. University of Pittsburgh; Estados UnidosFil: Cantu Medellin, Nadiezhda. University of Pittsburgh; Estados UnidosFil: Weidert, Eric R.. University of Pittsburgh; Estados UnidosFil: Frisbee,Jefferson C.. University of Virginia; Estados UnidosFil: Gladwin, Mark T.. University of Pittsburgh; Estados UnidosFil: Champion, Hunter C.. University of Pittsburgh; Estados UnidosFil: Freeman, Bruce A.. University of Pittsburgh; Estados UnidosFil: Khoo, Nicholas K.H.. University of Pittsburgh; Estados Unido
Differential activation of catalase expression and activity by PPAR agonists: Implications for astrocyte protection in anti-glioma therapy
AbstractGlioma survival is dismal, in part, due to an imbalance in antioxidant expression and activity. Peroxisome proliferator-activated receptor (PPAR) agonists have antineoplastic properties which present new redox-dependent targets for glioma anticancer therapies. Herein, we demonstrate that treatment of primary cultures of normal rat astrocytes with PPAR agonists increased the expression of catalase mRNA protein, and enzymatic activity. In contrast, these same agonists had no effect on catalase expression and activity in malignant rat glioma cells. The increase in steady-state catalase mRNA observed in normal rat astrocytes was due, in part, to de novo mRNA synthesis as opposed to increased catalase mRNA stability. Moreover, pioglitazone-mediated induction of catalase activity in normal rat astrocytes was completely blocked by transfection with a PPARγ-dominant negative plasmid. These data suggest that defects in PPAR-mediated signaling and gene expression may represent a block to normal catalase expression and induction in malignant glioma. The ability of PPAR agonists to differentially increase catalase expression and activity in normal astrocytes but not glioma cells suggests that these compounds might represent novel adjuvant therapeutic agents for the treatment of gliomas
Notch intracellular domain overexpression in adipocytes confers lipodystrophy in mice
Objective: The Notch family of intermembrane receptors is highly conserved across species and is involved in cell fate and lineage control. Previous in vitro studies have shown that Notch may inhibit adipogenesis. Here we describe the role of Notch in adipose tissue by employing an in vivo murine model which overexpresses Notch in adipose tissue.
Methods: Albino C57BL/6J RosaNICD/NICD::Adipoq-Cre (Ad-NICD) male mice were generated to overexpress the Notch intracellular domain (NICD) specifically in adipocytes. Male RosaNICD/NICD mice were used as controls. Mice were evaluated metabolically at the ages of 1 and 3 months by assessing body weights, serum metabolites, body composition (EchoMRI), glucose tolerance and insulin tolerance. Histological sections of adipose tissue depots as well as of liver were examined. The mRNA expression profile of genes involved in adipogenesis was analyzed by quantitative real-time PCR.
Results: The Ad-NICD mice were heavier with significantly lower body fat mass compared to the controls. Small amounts of white adipose tissue could be seen in the 1-month old Ad-NICD mice, but was almost absent in the 3-months old mice. The Ad-NICD mice also had higher serum levels of glucose, insulin, triglyceride and non-esterified fatty acids. These differences were more prominent in the older (3-months) than in the younger (1-month) mice. The Ad-NICD mice also showed severe insulin resistance along with a steatotic liver. Gene expression analysis in the adipose tissue depots showed a significant repression of lipogenic (Fasn, Acacb) and adipogenic pathways (C/ebpα, C/ebpβ, Pparγ2, Srebf1).
Conclusions: Increased Notch signaling in adipocytes in mice results in blocked expansion of white adipose tissue which leads to ectopic accumulation of lipids and insulin resistance, thus to a lipodystrophic phenotype. These results suggest that further investigation of the role of Notch signaling in adipocytes could lead to the manipulation of this pathway for therapeutic interventions in metabolic disease
Electrophilic nitro-oleic acid reverses obesity-induced hepatic steatosis
Non-alcoholic fatty liver disease (NAFLD) is linked to obesity and insulin resistance and is the most prevalent chronic liver disease. During the development of obesity and NAFLD, mitochondria adapt to the increased lipid load in hepatocytes by increasing the rate of fatty acid oxidation. In concert with this, reactive species (RS) generation is increased, damaging hepatocytes and inducing inflammation. Hepatic mitochondrial dysfunction is central to the pathogenesis of NAFLD via undefined mechanisms. There are no FDA approved treatments for NAFLD other than weight loss and management of glucose tolerance. Electrophilic nitro-oleic acid (NO2-OA) displays anti-inflammatory and antioxidant signaling actions, thus mitochondrial dysfunction, RS production and inflammatory responses to NO2-OA and the insulin sensitizer rosiglitazone were evaluated in a murine model of insulin resistance and NAFLD. Mice on HFD for 20 wk displayed increased adiposity, insulin resistance and hepatic lipid accumulation (steatosis) compared to mice on normal chow (NC). The HFD mice had mitochondrial dysfunction characterized by lower hepatic mitochondrial complex I, IV and V activity compared to mice on NC. Treatment with NO2-OA or rosiglitazone for the last 42 days (out of 20 wk) abrogated HFD-mediated decreases in hepatic mitochondrial complex I, IV and V activity. Notably, NO2-OA treatment normalized hepatic triglyceride levels and significantly reversed hepatic steatosis. Despite the improved glucose tolerance observed upon rosiglitazone treatment, liver weight and hepatic triglycerides were significantly increased over vehicle-treated HFD mice. These observations support that the pleiotropic signaling actions of electrophilic fatty acids limit the complex hepatic and systemic pathogenic responses instigated by obesity, without the adverse effects of thiazolidinedione drugs such as rosiglitazone