14,336 research outputs found

    Stratospheric circulation studies based on Tiros 7, 15-micron data Final report

    Get PDF
    Stratospheric temperature distribution data based on Tiros 7 radiometer dat

    Kinetic limitations of cooperativity based drug delivery systems

    Full text link
    We study theoretically a novel drug delivery system that utilizes the overexpression of certain proteins in cancerous cells for cell specific chemotherapy. The system consists of dendrimers conjugated with "keys" (ex: folic acid) which "key-lock" bind to particular cell membrane proteins (ex: folate receptor). The increased concentration of "locks" on the surface leads to a longer residence time for the dendrimer and greater incorporation into the cell. Cooperative binding of the nanocomplexes leads to an enhancement of cell specificity. However, both our theory and detailed analysis of in-vitro experiments indicate that the degree of cooperativity is kinetically limited. We demonstrate that cooperativity and hence the specificity to particular cell type can be increased by making the strength of individual bonds weaker, and suggest a particular implementation of this idea. The implications of the work for optimizing the design of drug delivery vehicles are discussed.Comment: 4 pages, 4 figures, v3: minor revision

    Far field imaging by a planar lens: diffraction versus superresolution

    Full text link
    We resolve the long standing controversy regarding the imaging by a planar lens made of left-handed media and demonstrate theoretically that its far field image has a fundamentally different origin depending on the relationship between losses {inside} the lens and the wavelength of the light λ\lambda. At small enough λ\lambda the image is always governed by diffraction theory, and the resolution is independent of the absorption if both Imϵ1\epsilon \ll 1 and Imμ1\mu \ll 1. For any finite λ\lambda, however, a critical absorption exists below which the superresolution regime takes place, though this absorption is extremely low and can hardly be achieved. We demonstrate that the transition between diffraction limited and superresolution regimes is governed by {the} universal parameter combining absorption, wavelength, and lens thickness. Finally, we show that this parameter is related to the resonant excitation of the surface plasma waves

    Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset

    Get PDF
    Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI

    Spreading in Social Systems: Reflections

    Full text link
    In this final chapter, we consider the state-of-the-art for spreading in social systems and discuss the future of the field. As part of this reflection, we identify a set of key challenges ahead. The challenges include the following questions: how can we improve the quality, quantity, extent, and accessibility of datasets? How can we extract more information from limited datasets? How can we take individual cognition and decision making processes into account? How can we incorporate other complexity of the real contagion processes? Finally, how can we translate research into positive real-world impact? In the following, we provide more context for each of these open questions.Comment: 7 pages, chapter to appear in "Spreading Dynamics in Social Systems"; Eds. Sune Lehmann and Yong-Yeol Ahn, Springer Natur

    Reflective Ghost Imaging through Turbulence

    Full text link
    Recent work has indicated that ghost imaging may have applications in standoff sensing. However, most theoretical work has addressed transmission-based ghost imaging. To be a viable remote-sensing system, the ghost imager needs to image rough-surfaced targets in reflection through long, turbulent optical paths. We develop, within a Gaussian-state framework, expressions for the spatial resolution, image contrast, and signal-to-noise ratio of such a system. We consider rough-surfaced targets that create fully developed speckle in their returns, and Kolmogorov-spectrum turbulence that is uniformly distributed along all propagation paths. We address both classical and nonclassical optical sources, as well as a computational ghost imager.Comment: 13 pages, 3 figure

    Large-scale Spatiotemporal Spike Patterning Consistent with Wave Propagation in Motor Cortex

    Get PDF
    Aggregate signals in cortex are known to be spatiotemporally organized as propagating waves across the cortical surface, but it remains unclear whether the same is true for spiking activity in individual neurons. Furthermore, the functional interactions between cortical neurons are well documented but their spatial arrangement on the cortical surface has been largely ignored. Here we use a functional network analysis to demonstrate that a subset of motor cortical neurons in non-human primates spatially coordinate their spiking activity in a manner that closely matches wave propagation measured in the beta oscillatory band of the local field potential. We also demonstrate that sequential spiking of pairs of neuron contains task-relevant information that peaks when the neurons are spatially oriented along the wave axis. We hypothesize that the spatial anisotropy of spike patterning may reflect the underlying organization of motor cortex and may be a general property shared by other cortical areas

    Avalanche analysis from multi-electrode ensemble recordings in cat, monkey and human cerebral cortex during wakefulness and sleep

    Get PDF
    Self-organized critical states are found in many natural systems, from earthquakes to forest fires, they have also been observed in neural systems, particularly, in neuronal cultures. However, the presence of critical states in the awake brain remains controversial. Here, we compared avalanche analyses performed on different in vivo preparations during wakefulness, slow-wave sleep and REM sleep, using high-density electrode arrays in cat motor cortex (96 electrodes), monkey motor cortex and premotor cortex and human temporal cortex (96 electrodes) in epileptic patients. In neuronal avalanches defined from units (up to 160 single units), the size of avalanches never clearly scaled as power-law, but rather scaled exponentially or displayed intermediate scaling. We also analyzed the dynamics of local field potentials (LFPs) and in particular LFP negative peaks (nLFPs) among the different electrodes (up to 96 sites in temporal cortex or up to 128 sites in adjacent motor and pre-motor cortices). In this case, the avalanches defined from nLFPs displayed power-law scaling in double log representations, as reported previously in monkey. However, avalanche defined as positive LFP (pLFP) peaks, which are less directly related to neuronal firing, also displayed apparent power-law scaling. Closer examination of this scaling using more reliable cumulative distribution functions (CDF) and other rigorous statistical measures, did not confirm power-law scaling. The same pattern was seen for cats, monkey and human, as well as for different brain states of wakefulness and sleep. We also tested other alternative distributions. Multiple exponential fitting yielded optimal fits of the avalanche dynamics with bi-exponential distributions. Collectively, these results show no clear evidence for power-law scaling or self-organized critical states in the awake and sleeping brain of mammals, from cat to man.Comment: In press in: Frontiers in Physiology, 2012, special issue "Critical Brain Dynamics" (Edited by He BY, Daffertshofer A, Boonstra TW); 33 pages, 13 figures. 3 table
    corecore