13,471 research outputs found

    Self-Assembled Chiral Photonic Crystals From Colloidal Helices Racemate

    Full text link
    Chiral crystals consisting of micro-helices have many optical properties while presently available fabrication processes limit their large-scale applications in photonic devices. Here, by using a simplified simulation method, we investigate a bottom-up self-assembly route to build up helical crystals from the smectic monolayer of colloidal helices racemate. With increasing the density, the system undergoes an entropy-driven co-crystallization by forming crystals of various symmetries with different helical shapes. In particular, we identify two crystals of helices arranged in the binary honeycomb and square lattices, which are essentially composed by two sets of opposite-handed chiral crystal. Photonic calculations show that these chiral structures can have large complete photonic bandgaps. In addition, in the self-assembled chiral square crystal, we also find dual polarization bandgaps that selectively forbid the propagation of circularly polarized lights of a specific handedness along the helical axis direction. The self-assembly process in our proposed system is robust, suggesting possibilities of using chiral colloids to assemble photonic metamaterials.Comment: Accepted in ACS Nan

    A logistic regression model for microalbuminuria prediction in overweight male population

    Get PDF
    Background: Obesity promotes progression to microalbuminuria and increases the risk of chronic kidney disease. Current protocols of screening microalbuminuria are not recommended for the overweight or obese.

Design and Methods: A cross-sectional study was conducted. The relationship between metabolic risk factors and microalbuminuria was investigated. A regression model based on metabolic risk factors was developed and evaluated for predicting microalbuminuria in the overweight or obese.

Results: The prevalence of MA reached up to 17.6% in Chinese overweight men. Obesity, hypertension, hyperglycemia and hyperuricemia were the important risk factors for microalbuminuria in the overweight. The area under ROC curves of the regression model based on the risk factors was 0.82 in predicting microalbuminuria, meanwhile, a decision threshold of 0.2 was found for predicting microalbuminuria with a sensitivity of 67.4% and specificity of 79.0%, and a global predictive value of 75.7%. A decision threshold of 0.1 was chosen for screening microalbuminuria with a sensitivity of 90.0% and specificity of 56.5%, and a global predictive value of 61.7%.

Conclusions: The prediction model was an effective tool for screening microalbuminuria by using routine data among overweight populations

    Mechanical and biodeterioration behaviours of a clayey soil strengthened with combined carrageenan and casein

    Get PDF
    In the last decade, biopolymers have been used as organic soil binders in ground improvement and earthen construction material modification. Although biopolymer-treated soils have substantially enhanced mechanical strength, the deformation characteristics under external loads and material durability (e.g. biodeterioration due to microbial activity) have not yet been fully understood, which limits the in situ practical application of the biopolymer-based soil treatment technology. This study investigated the efficiency of combined carrageenan and casein in strengthening a clayey soil with the biodeterioration consideration. Both mechanical tests (e.g. unconfined compressive strength and one-dimensional consolidation) and biological tests (e.g. high throughput sequencing and rating of mould growth) were conducted. Results indicated that the usage of the carrageenan–casein mixture induced a higher soil compressive strength compared with either carrageen or casein, due to the formation of a three-dimensional gel network. In addition, carrageenan–casein mixture and casein decreased the compressibility of the clayey soil, which might be attributed to the casein’s peculiarity of self-associating into micelles, leading to minimal interactions with water molecules. Carrageenan, due to its affinity for water, increased the soil compressibility. Under the impact of microbial activity, the biopolymer-treated soils underwent deterioration in both surface appearance (i.e. coloured stains and patches caused by mould growth) and compressive strength. A linear relationship was proposed, in which a reduction in compressive strength by approximately 11% is expected while the rating of mould growth is increased by one in a five-rating system. The current research demonstrates that the soil reinforcement with combined carrageenan and casein is able to improve both soil strength and deformation behaviours. It is also suggested to take into account the biodeterioration considerations in the design and implementation of biopolymer-based soil reinforcement practices

    Electrode pooling: How to boost the yield of switchable silicon probes for neuronal recordings

    Get PDF
    State-of-the-art silicon probes for electrical recording from neurons have thousands of recording sites, but only a fraction of them can be used simultaneously due to the forbiddingly large volume of the associated wires. To overcome this fundamental constraint, we propose a novel method called "electrode pooling" that uses a single wire to serve multiple recording sites. Multiple electrodes are connected to a single wire through a set of controllable switches. Here we present the framework behind this method and an experimental strategy to support it. We show that under suitable conditions electrode pooling can save wires without compromising the content of the recordings. We make recommendations for the design of future devices to take advantage of this strategy

    An evolutionary algorithm with double-level archives for multiobjective optimization

    Get PDF
    Existing multiobjective evolutionary algorithms (MOEAs) tackle a multiobjective problem either as a whole or as several decomposed single-objective sub-problems. Though the problem decomposition approach generally converges faster through optimizing all the sub-problems simultaneously, there are two issues not fully addressed, i.e., distribution of solutions often depends on a priori problem decomposition, and the lack of population diversity among sub-problems. In this paper, a MOEA with double-level archives is developed. The algorithm takes advantages of both the multiobjective-problemlevel and the sub-problem-level approaches by introducing two types of archives, i.e., the global archive and the sub-archive. In each generation, self-reproduction with the global archive and cross-reproduction between the global archive and sub-archives both breed new individuals. The global archive and sub-archives communicate through cross-reproduction, and are updated using the reproduced individuals. Such a framework thus retains fast convergence, and at the same time handles solution distribution along Pareto front (PF) with scalability. To test the performance of the proposed algorithm, experiments are conducted on both the widely used benchmarks and a set of truly disconnected problems. The results verify that, compared with state-of-the-art MOEAs, the proposed algorithm offers competitive advantages in distance to the PF, solution coverage, and search speed

    The Bottom-Up EFT: Complete UV Resonances of the SMEFT Operators

    Full text link
    The standard model effective field theory (SMEFT) provides systematic parameterization of all possible new physics above the electroweak scale. According to the amplitude-operator correspondence, an effective operator can be decomposed into a linear combination of several j-basis operators, which correspond to local amplitudes carrying certain spin and gauge quantum numbers in a particular scattering channel. Based on the Poincare and gauge symmetries of scattering amplitude, we construct the j-basis using the Casimir method for both the Lorentz and gauge sectors. The quantum numbers of the j-basis operators fix the quantum numbers of any intermediate state in the corresponding amplitudes, such as a UV resonance. This can be re-interpreted as the j-basis/UV correspondence, thus obtaining the j-bases in all partitions of fields for an operator amounts to finding all of its UV origins at tree level, constituting the central part of the bottom-up EFT framework. Applying the j-basis analysis to SMEFT, we obtain a complete list of possible tree-level UV origins of the effective operators at the dimension 5, 6, 7, and all the bosonic operators at the dimension 8.Comment: 123 pages, 19 figures, 34 table
    • …
    corecore