1,190 research outputs found

    AudExpCreator: A GUI-based Matlab tool for designing and creating auditory experiments with the Psychophysics Toolbox

    Full text link
    We present AudExpCreator, a GUI-based Matlab tool for designing and creating auditory experiments. AudExpCreator allows users to generate auditory experiments that run on Matlab's Psychophysics Toolbox without having to write any code; rather, users simply follow instructions in GUIs to specify desired design parameters. The software comprises five auditory study types, including behavioral studies and integration with EEG and physiological response collection systems. Advanced features permit more complicated experimental designs as well as maintenance and update of previously created experiments. AudExpCreator alleviates programming barriers while providing a free, open-source alternative to commercial experimental design software.Comment: 15 pages, 6 figure

    Parallel-vector unsymmetric Eigen-Solver on high performance computers

    Get PDF
    The popular QR algorithm for solving all eigenvalues of an unsymmetric matrix is reviewed. Among the basic components in the QR algorithm, it was concluded from this study, that the reduction of an unsymmetric matrix to a Hessenberg form (before applying the QR algorithm itself) can be done effectively by exploiting the vector speed and multiple processors offered by modern high-performance computers. Numerical examples of several test cases have indicated that the proposed parallel-vector algorithm for converting a given unsymmetric matrix to a Hessenberg form offers computational advantages over the existing algorithm. The time saving obtained by the proposed methods is increased as the problem size increased

    A New Job Shop Heuristic Algorithm for Machine Scheduling Problems

    Get PDF
    The purpose of this research is to present a straightforward and relatively efficient method for solving scheduling problems. A new heuristic algorithm, with the objective of minimizing the makespan, is developed and presented in this paper for job shop scheduling problems (JSP). This method determines jobs’ orders for each machine. The assessment is based on the combination of dispatching rules e.g. the Shortest Processing Time of each operation, the Earliest Due Date of each job, the Least Tardiness of the operations in each sequence and the First come First Serve idea. Also, unlike most of the heuristic algorithms, due date for each job, prescribed by the user, is considered in finding the optimum schedule. A multitude of JSP problems with different features are scheduled based on this proposed algorithm. The models are also solved with Shifting Bottleneck algorithm, known as one of the most common and reliable heuristic methods. The result of comparison between the outcomes shows that when the number of jobs are less than or equal to the number of machines, the proposed algorithm concludes smaller, and better, makespan in a significantly lower computational time, which shows the superiority of the suggested algorithm. In addition, for a category when the number of jobs are greater than the number of machines, the suggested algorithm generates more efficient results when the ratio of the number of jobs to the number of machines is less than 2.1. However, in this category for the mentioned ratio to be higher than 2.1, the smaller makespan could be generated by either of the methods, and the results do not follow any particular trend, hence, no general conclusions can be made for this case

    The turbomachine blading design using S2-S1 approach

    Get PDF
    The boundary conditions corresponding to the design problem when the blades being simulated by the bound vorticity distribution are presented. The 3D flow is analyzed by the two steps S2 - S1 approach. In the first step, the number of blades is supposed to be infinite, the vortex distribution is transformed into an axisymmetric one, so that the flow field can be analyzed in a meridional plane. The thickness distribution of the blade producing the flow channel striction is taken into account by the modification of metric tensor in the continuity equation. Using the meridional stream function to define the flow field, the mass conservation is satisfied automatically. The governing equation is deduced from the relation between the azimuthal component of the vorticity and the meridional velocity. The value of the azimuthal component of the vorticity is provided by the hub to shroud equilibrium condition. This step leads to the determination of the axisymmetric stream sheets as well as the approximate camber surface of the blade. In the second step, the finite number of blades is taken into account, the inverse problem corresponding to the blade to blade flow confined in each stream sheet is analyzed. The momentum equation implies that the free vortex of the absolute velocity must be tangential to the stream sheet. The governing equation for the blade to blade flow stream function is deduced from this condition. At the beginning, the upper and the lower surfaces of the blades are created from the camber surface obtained from the first step with the assigned thickness distribution. The bound vorticity distribution and the penetrating flux conservation applied on the presumed blade surface constitute the boundary conditions of the inverse problem. The detection of this flux leads to the rectification of the geometry of the blades

    Optimization of Stability Constrained Geometrically Nonlinear Shallow Trusses Using an Arc Length Sparse Method with a Strain Energy Density Approach

    Get PDF
    A technique for the optimization of stability constrained geometrically nonlinear shallow trusses with snap through behavior is demonstrated using the arc length method and a strain energy density approach within a discrete finite element formulation. The optimization method uses an iterative scheme that evaluates the design variables' performance and then updates them according to a recursive formula controlled by the arc length method. A minimum weight design is achieved when a uniform nonlinear strain energy density is found in all members. This minimal condition places the design load just below the critical limit load causing snap through of the structure. The optimization scheme is programmed into a nonlinear finite element algorithm to find the large strain energy at critical limit loads. Examples of highly nonlinear trusses found in literature are presented to verify the method

    Boundary control of vibration in coupled nonlinear three dimensional marine risers

    Get PDF
    This paper presents a design of boundary controllers implemented at the top end for global stabilization of a marine riser in three dimensional space under environmental loadings. Based on the energy approach, nonlinear partial differential equations of motion including bending-bending and longitudinal-bending couplings for the risers are derived. These couplings cause mutual effects between the three independent directions in the riser’s motions and make it difficult to minimize its vibrations. The Lyapunov direct method is employed to design the boundary controller. It is shown that the proposed boundary controllers can effectively reduce the riser’s vibration. Stability analysis of the closed-loop system is performed using the Lyapunov direct method. Numerical simulations illustrate the results

    Java Computer Animation for Effective Learning of the Cholesky Algorithm with Transportation Engineering Applications

    Get PDF
    In this paper, the well-known Cholesky Algorithm (for solving simultaneous linear equations, or SLE) is re-visited, with the ultimate goal of developing a simple, user-friendly, attractive, and useful Java Visualization and Animation Graphical User Inter-face (GUI) software as an additional teaching tool for students to learn the Cholesky factorization in a step-by-step fashion with computer voice and animation. A demo video of the Cholesky Decomposition (or factorization) animation and result can be viewed online from the website: http://www.lions.odu.edu/~imako001/cholesky/demo/index.html. The software tool developed from this work can be used for both students and their instructors not only to master this technical subject, but also to provide a dynamic/valuable tool for obtaining the solutions for homework assignments, class examinations, self-assessment studies, and other coursework related activities. Various transportation engineering applications of SLE are cited. Engineering educators who have adopted “flipped classroom instruction” can also utilize this Java Visualization and Animation software for students to “self-learning” these algorithms at their own time (and at their preferable locations), and use valuable class-meeting time for more challenging (real-life) problems’ discussions. Statistical data for comparisons of students’ performance with and without using the developed Java computer animation are also included

    Acute Kidney Injury After Percutaneous Coronary Intervention Guided by Intravascular Ultrasound

    Get PDF
    Purpose We investigated the impact of intravascular ultrasound guidance on reducing the incidence of contrast-induced acute kidney injury (CI-AKI) in patients undergoing percutaneous coronary intervention (PCI). Methods Ninety-nine patients were enrolled in this prospective cohort who were not randomly assigned to angiography-guided percutaneous coronary intervention or intravascular ultrasound-guided percutaneous coronary intervention. The patients were hospitalized at the Vietnam National Heart Institute - Bach Mai Hospital between 2019 and 2020. Acute kidney injury incidence during hospitalization was the primary endpoint. Results A total of 99 patients were divided into two groups: the intravascular ultrasound-guided group (33 participants) and the angiography-guided group (66 participants). The mean ± SD contrast volume of each group was 95.2 ± 37.1 mL and 133.0 ± 36.0 mL for the ultrasound-guided and angiography-guided groups, with P \u3c 0.0001. Intravascular imaging-guided percutaneous coronary intervention (IVUS-guided PCI) was associated with reduced acute kidney injury incidence during hospitalization: 0.0% vs. 12.12% and P = 0.049. Conclusions Intravascular ultrasound is a safe imaging tool that guides percutaneous coronary intervention and significantly reduces the rate of acute kidney injury compared to angiography alone. Patients who have a high chance of experiencing acute kidney injury benefit from using intravascular ultrasound

    The viscosity radius in dilute polymer solutions: Universal behaviour from DNA rheology and Brownian dynamics simulations

    Full text link
    The swelling of the viscosity radius, αη\alpha_\eta, and the universal viscosity ratio, UηRU_{\eta R}, have been determined experimentally for linear DNA molecules in dilute solutions with excess salt, and numerically by Brownian dynamics simulations, as a function of the solvent quality. In the latter instance, asymptotic parameter free predictions have been obtained by extrapolating simulation data for finite chains to the long chain limit. Experiments and simulations show a universal crossover for αη\alpha_\eta and UηRU_{\eta R} from θ\theta to good solvents in line with earlier observations on synthetic polymer-solvent systems. The significant difference between the swelling of the dynamic viscosity radius from the observed swelling of the static radius of gyration, is shown to arise from the presence of hydrodynamic interactions in the non-draining limit. Simulated values of αη\alpha_\eta and UηRU_{\eta R} are in good agreement with experimental measurements in synthetic polymer solutions reported previously, and with the measurements in linear DNA solutions reported here.Comment: 19 pages, 14 figures, two column, Supporting Information added, to appear in Macromolecule
    corecore