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PARALLEL-VECTOR UNSYMMETRIC EIGEN-SOLVER
ON HIGH PERFORMANCE COMPUTERS

Duc T. Nguyen
Qin Jiangning
Center for Multidisciplinary Parallel-Vector Computation
Civil Engineering Department
Old Dominion University

Abstract

The popular QR algorithm for solving all eigenvalues of an unsymmetric matrix is
reviewed. Among the basic components in the QR algorithm, it has been concluded from
this study, that the reduction of an unsymmetric matrix to a Hessenberg form (before
applying the QR algorithm itself) can be done effectively by exploiting the vector speed and
multiple processors offered by modern high-performance computers.

Numerical examples of several test cases have indicated that the proposed parallel-vector
algorithm for converting a given unsymmetric matrix to a Hessenberg form offers
computational advantages over the existing algorithm. The time saving obtained by the
proposed method is increased as the problem size increased.

1. Introduction

The algorithms for symmetric matrices [1-3] are highly satisfactory in practice. By
contrast, it is impossible to design equally satisfactory algorithms for the nonsymmetric cases,
which is needed in Controls-Structures Interaction (CSI) applications [1,4]. There are two
reasons for this. First, the eigenvalues of a nonsymmetric matrix can be very sensitive to
small changes in the matrix elements. Second, the matrix itself can be defective, so that there
is no complete set of eigenvectors. -

There are several basic building blocks in the QR algorithm, which is generally regarded
as the most effective algorithm, for solving all eigenvalues of a real, unsymmetric matrix.
These basic components of the QR algorithm are reviewed in Section II. Basic techniques
to exploit the vector speed and multiple processors offered by modern high-performance
computers are explained in Section III. An analysis of the Hessenberg reduction component
in the QR algorithm is given in Section IV where both vector and parallel techniques are
incorporated into the Hessenberg reduction component. Numerical examples are provided
in Section V to evaluate the performance of the proposed method over the existing one.
Conclusions and recommendations are given in Section VI. Finally, a listing of the
Hessenberg reduction algorithm (in the form of Fortran coding) is provided in the appendix.

II. Basic Components of the QR Algorithm [3,5]
2.1 Balancing:



The idea of balancing is to use similarity transformations to make corresponding rows and
columns of the matrix have comparable norms, thus reducing the overall norm of the matrix
while leaving the eigenvalues unchanged.

The time taken by the balanced procedure is insignificant as compared to the total time
required to find the eigenvalues. For this reason, it is strongly recommended that a
nonsymmetric matrix need to be balanced before even attempting to solve for eigen-
solutions.

2.2 Reduction to Hessenberg form:

The strategy for finding the eigensolution of an unsymmetric matrix is similar to that of
the symmetric case. First we reduce the matrix to a simpler Hessenberg form, and then we
perform an iterative procedure on the Hessenberg matrix. An upper Hessenberg matrix has
zeros everywhere below the diagonal except for the first subdiagonal. For example, in the
6 x 6 case, the nonzero elements are:
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Thus, a procedure analogous to Gaussian elimination can be used to convert a general
unsymmetric matrix to an upper Hessenberg matrix. The detailed coding of the Hessenberg
reduction procedure is listed in subroutine OELMHS of the appendix.

Once the unsymmetric matrix has already been converted into the Hessenberg form, the
QR algorithm [3,5] itself can be applied on the Hessenberg matrix to find all the real and
complex eigenvalues. For completeness, detailed coding of the QR algorithm on the
Hessenberg matrix is listed in subroutine HQR of the appendix.

III. Basic Techniques For Vector and Parallel Speeds

In this section, a simple example of matrix times vector is used to explain some basic
vector and parallel techniques which are useful for Hessenberg reduction algorithm.

2 -1 0
Given a 3x3 Matrix A = (-1 2 -1| and a vector x = {1,0,0)7
o -1 1

Here, the dimension of the system is N=3. The objectives are to develop efficient parallel -
vector matrix times vector subroutines.



3.1 Row-by-Row conventional approach:

DOo1 I=1,N

DO 2 J=1,N

B(I) = B(I)+A(1L,J) *x(J)
2 Continue

1 Continue

It should be emphasized here that in this approach, the value of B(I) corresponds to the
final answer.

3.2 Column-by-Column conventional approach:

Do1 J=1N

bo2 I=1N

B(I) = BUI) + A(L.J) * x(J)
2 Continue

1 Continue

It should be emphasized here that in this approach, the value of B(I) does NOT
correspond to the final answer. B(I) only gives the partial (or incomplete) answer and it will
give the final answer only if all values of J have been executed. It is also observed that x(J)
is a constant (with respect to loop 2), thus the operations involved in loop 2 can be stated
generally as: A new vector B = Old vector B + Constant * another vector A.

3.3 Row-by-Row “vector unrolling” approach:

Assuming the dimension N of the system is large, say N = 600, then the algorithm in
Section 3.1 can be modified to improve the vector speed as following:

NUNROL = 2
bo1 I =1,N, NUNROL
bo2 J=1N

B(I) = B(I) + A(I,J) » x(J)
B(I+1) = B(I+1) + A(I+1,J) * x(J)
2 Continue

1 Continue

The operations involved inside loop 2 is referred to as “dot product” operations.
3.4 Column-by-Column “loop-unrolling” approach

The algorithm in Section 3.2 can be modified to improve the vector speed performance



NUNROL = 2
DO 1 J =1,N, NUNROL
bDo2 I=1,N
B(I) = B(I) + A(1,J) * x(J)
+ A(Lj+1) * x(J+1)
2 Continue
1 Continue

The operations involved inside loop 2 is referred to as "saxpy" operations.
3.5 Parallel-vector loop-unrolling approach:

For multiple processors, the algorithm in Section 3.4 can be modified to take advantage
of parallel speed (in addition to vector speed)

NUNROL = 2
Parallel DO 1 J = 1,N, NUNROL
bo2 1=1,N

B(I) = B(I) + A(ILJ) * x(J)

+ A(LJ+1) * x(J+1)
2 Continue
1 Continue

In this algorithm, each value of the index J (of loop 1) is assigned to different processors for
parallel computation.

IV. An Analysis of the Hessenberg Reduction Algorithm

A careful look into the Hessenberg reduction algorithm of Section 2.2 and subroutine
OELMHS of the appendix will reveal that the most intensive computations of Subroutine
OELMHS occur in loops 140 and 150 of the code. Furthermore, the Fortran statement
inside loop 150 can be generally expressed as:

A, M) = AUM) + Y * AD)
or
A new vector A(J, -) = old vector A(], -) + (a constant) * another vector A(J,*)

Thus, one can immediately see the similarity between loops 160 & 150 of Subroutine
OELMHS and loops 1 & 2 of the matrix times vector algorithm presented in Section 3.2.
From the experience we have had in section 3.5, we can therefore similarly apply the parallel
computations in loop 160 and loop-unrolling (here NUNROL = 8 is used) for vector
computations in loop 150 of subroutine OELMHS.

For completeness, the entire parallel-vector version of the Hessenberg reduction, and the

original QR algorithms are listed in the Appendix.
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V. Numerical Examples

In order to evaluate the numerical accuracy and the performance of the new parallel-
vector Hessenberg Reduction portion of the QR algorithm, the following numerical tests are
performed.

Example 1:
Find all eigenvalues of the following 2 x 2 unsymmetric matrix

1

The analytical eigen-value solution for this problem is:

15 + 691
1.5 -691i

Aq
Az

which also matches with the computer solution.

Example 2:

In this example, the unsymmetric matrix [A]n, is automatically generated for any dimension
N of the matrix [A] (please refer to the code given in the Appendix). The accuracy and the
performance of the new parallel-vector Hessenberg reduction algorithm is compared to the
original subroutine. Since the QR algorithm itself is highly sequential, no attempts to
parallelize and vectorize the QR algorithm have been made. However, the total solution
time of the complete unsymmetric eigensolution process (= Hessenberg Reduction Time and
QR Time) are also presented in Tables 1 and 2.



where:

Table 1: Vector Performance on the Alliant Using etime (t), fortran -DAS -O -alt -1 -OM

- 1 option will tell which loop does not vectorize

- OM option will not print warning messages

“Original” CSI version
HR = Hessenberg
[ Reduction Time
Size N QR Time “New” version
\
100 x 100 0.41 secC 0.39 sec
0.97 sec \0.97 sec;
{ '\
200 x 200 (2.210 sec‘l 2.22 sec
5.195 sec \5.19 sec,
400 x 400 16.9 14.00
33.9 33.93
{ \
600 x 600 55.48 51.0
\94.20, 94.2
[ 1 \
200 x 800 61.6 (1 19)
N/A ) NJA

mE

i



Table 2: Parallel-Vector Performance on Cray-YMP (Reynolds) Using tsecnd ().

“Original” CSI version R .
New” version
HR = Hessenberg
Reduction Time
QR Time 1 Cray-YMP | 2 Cray-YMP | 3 Cray-YMP
Size N | 1 Cray-YMP Processor Processor Processors Processors
0.02 sec 0.02 sec 0.03 sec 0.03 sec
100 x 100
0.07 sec 0.07 sec 0.07 sec 0.07 sec
(0.12) A1) (0.08) (0.07)
200 x 200 0.12 01 0
\0.42) \0.42) \0.41) \0.41,
1.19) (0.72) 0.41 (0.27)
400 x 400
\3.15, \3.19) \3.18, \3.19)
(2.90 2.28) 1.22) (0.70)
600 x 600
\7.12) \7.12, \7.08) \7.12)
14.34 . . .
200 x 800 ] 5.17 (269) 1.45
33.25 33.31 33.27 33.43

V1. Conclusions and Recommendatjons:

The most popular and effective procedure to solve all eigenvalues of an unsymmetric
matrix involved 2 major tasks, namely Hessenberg reduction form and QR algorithm on the
Hessenberg matrix. In general, QR algorthm requires between 2 to 3 times more
computational effort than the Hessenberg reduction algorithm.

In this study, the parallel and vector speeds of the Hessenberg reduction algorithm has
been developed and implemented on the Alliant and Cray-YMP (Reynolds) computers.
Numerical results have indicated that the proposed parallel-vector Hessenberg reduction
algorithm does offer computational advantages (without losing its accuracy) as compared to
the existing algorithm. The time saving is more significant as the problem size increased.
Further research work is critically needed to improve the unsymmetric eigensolution
procedure (using the QR, or another better, new parallel algorithm).

Acknowledgments:

This research work was supported by a NASA Task NAS 1-18584-122, and Mr. Joseph
Walz was the NASA technical monitor.



References:

1. W. K. Belvin, P.G. Maghami, and D.T. Nguyen, “Efficient Use of High-Performance
Computers for Integrated Controls and Structures Design,” Proceedings of the
Symposium on High-Performance Computing for Flight Vehicles, Washington, D.C.,
December 7-9, 1992,

2. K.J. Bathe, Finite Element Procedures In Engineering Analysis, Prentice-Hall, Englewood
Cliffs, New Jersey, 1982.

3. G.H. Golub, and CF.V. Loan, Matrix Computatjons, Baltimore: Johns Hopkins
University Press (1983).

4. P.G. Maghami, S.M. Joshi, K.B. Elliot, and J.E. Walz, “Integrated Design of the CSI
Evolutionary Structure: A verification of the design methodology,” Proceedings of the
Fifth NASA/DOD Controls-Structures Interaction Conference, Lake Tahoe, NV, March

1992.

5. W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes: The
Art of Scientific Computing (Fortran_Version), Cambridge University Press (1990).

[ ]



APPENDIX

Parallel-Vector Hessenberg Reduction And Sequential
QR Algorithm [5]



FILE: UNSEIG FRC Al OLD DOMINION UNIVERSIIHY

C----- PARALLEL/VECTOR UNSYMMETRIC EIGENSOLVER by Qin & Nguyen,May 19392 #*
Cevnnnn This is a working version of '"unsymmetrical'" eigen-solver

Ceves..0n the sun386 work station. On the Cray-YMP (Reynold or Sabre),
Covennn this "exact'" same version should offer good vector & parallel

€......speed (only for subroutine to perform Hessenberg reduction).
Civevs.For SMALL problems, the improvements due to parallel-vector

C......Hessenberg is NOT MUCH, However, for LARGE problems, since the
Covnne .Hessenberg reduction timing becomes more important (as compared to
C......the TOTAL eigen-solution time), the total time saving for the entire
Ceovennn eigen-solution process is also very significant,

C.s....5ince this version was developed specifically for CS| applications
€......{according to Peiman's specifications/requirements) ,ALL EIGENVALUES
€......(and NONE of the corresponding EIGENVECTORS) of an N by N squared
C+...s.unsymmatrical matrix are found.
Criveven "ARTIFICIAL" datas of varous sizes (N = 2 ----> 800) with ALL REAL
Covennn and MIXED REAL & COMPLEX eigenvalues have been verified (by comparing
C......the results obtained by the original unsym. eigen-sol. taken from
C......0RACLE and the modified version from the ODU team, and also by HAND
. €Cesv...CALCULATION for the size N = 2)

Force PVQR of NP ident ME

Shared REAL A{1000000) ,WK (1000,2)

Shared REAL ER(1000),El (1000) ,E1G (1000)

Shared REAL EPS,ERRCK

Shared INTEGER N,NM,NMM,NMAX,NST,MQ, IMODE, IERR,nguyen

End Declarations
C %%% THIS IS THE PROGRAM CALL UNSYMMETRIC EIGENSLVER *¥¥k#dkksk

Barrier

WRITE (*,%) 'N, |MODE (0=old version),nguyen(l=duc-s data) ='

READ (5,*) N, imode,nguyen

WRITE (*,%) 'N IMODE NGUYEN =',N,iMODE,nguyen

ERRCK= 0.0000001

eps=geteps (ibeta,it,irnd)

write(%,%)'%%% EPS =!, eps
write(%,101)N, imode
101 FORMAT (//,' INPUT PARAMETERS:',/,
1 'N = ',15,' - Size of System'//,
1 'IMODE= ',I15,' - =0 is old sequential'//)

End Barrier
Forcecall RESV(N,N,A,ER,EIl,WK, |ERR,EIG, IMODE, nguyen)

Join
END
FUNCTION GETEPS (IBETA,IT, IRND)
a=1.0
10 a=a+a
if(((at1.0)~a)-1.0.eq.0.00) go to 10
b=1.0
20 b=b+b

if ((a+b)-a.eq.0.00) go to 20
gina=(a+b) -a
ibeta=int (gina)
beta=float (ibeta)
it=0
b=1.0
30 Pt=it+]
b=b*beta

10
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if (((b+1.0)-b)-1.0.eq.0.00)go to 30
i rnd=0
betaml=beta-1.0
if ((atbetaml) -a.ne.0.00) irnd=1
betain=1.0/beta )
a=1.0
do 4O i=1,it+3
a=a*betain
Lo continue
50 if((1.0+a)-1.0.ne.0.00)go to 60
a=a%beta
go to 50
60 eps=a
if((ibeta.eq.2).or.(irnd.eq.0))go to 70
a=(a% (1.0+a)) / (1.0+1.0)
if((1.0+a)~1.0.ne.0.00) eps=a
70 geteps=eps
return
end
Cededodededededededededededo e dededede dodedodk fededede ke dede e dededede ook e e oot deddededfede ek
Forcesub RESV (MAX,N,A,ER,EI,WK, |ERR,EIG, IMODE,nguyen) of NP
$ ident ME
INTEGER MAX,N, IERR, IMODE
Shared Integer LOW,IGH,NACC

F2.4
Yededek
FUNCTION - COMPUTES ALL THE EIGENVALUES AND SELECTED
PARAMETERS MAX - MAXIMUM ROW DIMENSION OF A
N - ORDER OF A

A (MAX,N) - INPUT MATRIX (DESTROYED)

ER (N) - CONTAINS REAL PART OF THE EIGENVALUES

El(N) - CONTAINS IMAGINARY PART OF THE EIGENVALUES

WK (-) - WORKING STORAGE OF FOLLOWING DIMENSION
DIMENSION 3%N IF ISV+ILV = 0
DIMENSION N#*(N+7) OTHERWISE

FERR - INTEGER ERROR CODE

O  NORMAL RETURN
-J J-TH EIGENVECTOR DID NOT CONVERGE.
VECTOR SET TO ZERO. IF FAILURE OCCURS
MORE THAN ONCE, [NDEX FOR LAST
OCCURRENCE [N [ERR.
=J J-TH EIGENVALUE HAS NOT BEEN
DETERMINED AFTER 30 ITERATIONS
OUTPUT FORMAT - EIGENVALUES ARE STORED IN ASCENDING MAGNITUDE
WITH COMPLEX CONJUGATES STORED WITH POSITIV
IMAGINARY PARTS FIRST. THE EIGENVECTORS ARE
PACKED AND STORED IN V IN THE SAME ORDER AS
THEIR EIGENVALUES APPEAR IN ER AND EI.
ONLY ONE EIGENVECTOR (S COMPUTED FOR COMPLE
CONJUGATES (FOR CONJUGATE WITH POSITIVE
IMAGINARY PART). UPON ERROR EXIT -J, EIGEN-
VALUES ARE CORRECT AND EIGENVECTORS
ARE CORRECT FOR ALL NON-ZERQO VECTORS.
UPON ERROR EXIT J, EIGENVALUES ARE CORRECT
BUT UNORDERED FOR INDICES IERR+1,1ERR+2,...

OO0 0000000000000 0000O00O000 ¢

11
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C N AND NO EIGENVECTORS ARE COMPUTED.
C REQUIRED ROUTINES - QXZ146,0XZ147,QXZ152
C feddkk
REAL A(N,N) ,ER(N),EIl (N),WK(N,2),EIG(])
End Declarations
C DIMENSION A (MAX,N),ER(N),EI (N),V (MAX,*) ,WK(N,*)
c LOGICAL LTESTV
c EQUIVALENCE (TESTV,LTESTV)
CQIN DATA TRUE,FALSE / '7777777771177777717777'0, '00000000000000000000'0
CQIN +/
c DATA TRUE,FALSE / 7777777777777777777-0,0.,0000000000000000000 /
C Ffkk .
C PRELIMINARY REDUCTION
C fekdksx
Barrier
DO 2 J=1,N
DO 1 I=1,N
if(i.1t.j) then
a(i,j)=1.373737373737/ (float (i+]))
else
A(i,j)=0.973197319731/ (float (i+j+j/2))
endif
1 continue
2 contjnue
do 3 i=1,n
3 ali,i)=float (i*i)
Civnono Duc T. Nguyen added this portion to test "complex' eigen-solution !
if (nguyen.eq.1) then
D0 29 J=1,N
D0 19 I=1,N
if(i.1t.j) then
a(i,j)=-1.373737373737*10.0/(float (i+j))
else
A(i,j)=0.973197319731*%10.0/ (float (i+j+j/2))
endif
19 continue
29 continue
do 39 i=l,n
39 ali,i)=float (i)

a(1,1)=2.
a(1,2)=-6.
a(2,1)=8.
a(2,2)=1.
endif

C #%x&x% SAVE A FOR NORM CHECK #¥kk¥k
Tow=1 ’
igh=n

TIMEO=0.0
End Barrier
t00=TSECND ()

c CALL QXZ146 (MAX,N,A,LOW,IGH,WK)

t11=TSECND ()
if (imode.ne.0) then

12
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Forcecall QXZ147 (MAX,N,LOW, IGH,A,WK (1,2) ,eig)
else
Forcecall OELMHS (MAX,N,LOW, IGH,A,WwK (1,2))
endif
T22=TSECND ()
TIMEO=TIMEQ+T22-TOO
c write(6,%) '*x ME CPU in QXZ146 = ',ME, T11-TOO
write(6,%) '®% ME CPU in QXZ147 (OELMHS) = ',ME,T22-T11
if (me.eq.1) then

write (%, %) ' %% - A -—- fekek !
do 1122 i=n-10,n

write(%,%) 'A(',i,',n) = ',a(i,n)
1122 continue

endif
C %%fk%
C COMPUTE ALL EIGENVALUES AND NO EIGENVECTORS
C Fefedek

Barrier

t00=TSECND ()
if(imode.eq.0) then
call HQR (MAX,N,LOW,IGH,A,ER,EIl,1ERR)
else
call qxz1521 (max,n,low,igh,A,er,ei,ierr)
endif
t11=TSECND ()
write(*,%)' %% |[MODE ,CPU time in QXZ152 = ',imode,t11-t00
if(me.eqg.1) then
write (%,%)' #%&%x Eigen value#,real ER(I), imaginary EI {I) #*%x!
do 7 I=n-10,n
write(*,%) I,er (i),ei (i)

7 continue
Civvana rearrange eigenvalues according to ascending order (of real part)
call ascend(n,er,ei,wk).
endif
End Barrier
RETURN
END
C --- SUBPROGRAM QXZ1L6 --- FORMERLY KNOWN AS ROUTINE BALANC ---
c g
c __________________________________________________________
SUBROUTINE QXZ1L46 (NM,N,A,LOW, IGH,SCALE)
o
INTEGER 1,J,K,L,M,N,JJ,NM, IGH,LOW, IEXC
REAL A (N,N),SCALE (N)
REAL C,F,G,R,5,B2,RADIX
LOGICAL NOCONV
C
C THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE BALANCE,
C NUM. MATH. 13, 293-304(1969) BY PARLETT AND REINSCH.
C HANDBOOK FOR AUTO. COMP., VOL.!I-LINEAR ALGEBRA, 315-326(1971).
C
c THIS SUBROUTINE BALANCES A REAL MATRIX AND {SOLATES
C EIGENVALUES WHENEVER POSSIBLE.
C
C ON INPUT

13
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NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT.

N 1S THE ORDER OF THE MATRIX.
A CONTAINS THE INPUT MATRIX TO BE BALANCED.
ON OUTPUT
A CONTAINS THE BALANCED MATRIX.
LOW AND IGH ARE TWQ INTEGERS SUCH THAT A(1,J)
IS EQUAL TO ZERO IF
(1) 1 1S GREATER THAN J AND
(2) J=1,...,LOW-1 OR I=IGH+1,...,N.

SCALE CONTAINS INFORMATION DETERMINING THE
PERMUTATIONS AND SCALING FACTORS USED.

SUPPOSE THAT THE PRINCIPAL SUBMATRIX IN ROWS LOW THROUGH IGH
HAS BEEN BALANCED, THAT P (J) DENOTES THE INDEX INTERCHANGED
WITH J DURING THE PERMUTATION STEP, AND THAT THE ELEMENTS

OF THE DIAGONAL MATRIX USED ARE DENOTED BY D(i,J). THEN

SCALE(J) = P(J), FOR J = 1,...,L0OW-1
=D(J,J), J = LOW,...,IGH
= P(J) J = IGH+1,...,N.

THE ORDER IN WHICH THE INTERCHANGES ARE MADE IS N TO IGH+1,
THEN 1 TO LOW-1.

NOTE THAT 1 1S RETURNED FOR IGH IF IGH 1S ZERO FORMALLY.
THE ALGOL PROCEDURE EXC CONTAINED iN BALANCE APPEARS IN
QXZ1hé6 IN LINE. (NOTE THAT THE ALGOL ROLES OF IDENTIFIERS
K,L HAVE BEEN REVERSED.)

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED AUGUST 1983.

BASED ON THE EISPACK VERSION 3 ROUTINE BALANC, AS MODIFIED
BY COMPUTER SCIENCES CORPORATION, MAY 1984,

RADIX = 16.00

.......... IN-LINE PROCEDURE FOR ROW AND
COLUMN EXCHANGE ....0vvee.

14
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SCALE(M) = J
IF (J .EQ. M) GO TO 50

po 301 =1, L
F=a(,J)
A(l,J) A(1,M)
A(l,M)

CONTINUE

DO 40 | =
F=A(
A(J,1)
A (M, 1)

CONTINUE

=
-4

non-
b
—
=
<
=

GO TO (80,130), [EXC
.......... SEARCH FOR ROWS ISOLATING AN EIGENVALUE
AND PUSH THEM DOWN ..........
IF (L .EQ. 1) GO TO 280
L=1L -1
.......... FOR J=L STEP -1 UNTIL 1 DO -- ....cvvvees
DO 120 JJ =1, L
J=L+1-JJ

po 11701 =1, L

IF (1 .EQ. J) GO TO 110

IF (A(J,1) .NE. 0.00) GO TO 120
CONTINUE

M=1

FEXC = 1

GO TO 20
CONTINUE

GO TO 140

.......... SEARCH FOR COLUMNS |SOLATING AN EIGENVALUE

AND PUSH THEM LEFT ....oveu

DO 170 J = K, L

DO 150 | =K, L

IF (I .EQ. J) GO TO 150

IF (A(1,J) .NE. 0.00) GO TO 170
CONTINUE

M=K
I[EXC = 2
GO TO 20
CONTINUE
.......... NOW BALANCE THE SUBMATRIX [N ROWS K TO L
DO 180 | K, L
SCALE (1) 1.00

.......... ITERATIVE LOOP FOR NORM REDUCTION .......

NOCONV = .FALSE.

15
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c
DO 270 | = K, L
C =0.00
R = 0.00
C
DO 200 J = K, L
IF (J .EQ. |I) GO TO 200
C=C+ ABS(A(J,1))
R =R+ ABS(A(1,J))
200 CONTINUE
C viirvnenns GUARD AGAINST ZERO C OR R DUE TO UNDERFLOW ..........
IF (C .EQ. 0.00 .OR. R .EQ. 0.00) GO TO 270
G =R / RADIX
F=1.00
S=C+R
210 IF (C .GE. G) GO TO 220
F = F % RADIX
C=C * B2
GO TO 210
220 G =R * RADIX
230 IF (C .LT. G) GO TO 240
F =F / RADIX
C=2¢C/ B2
GO TO 230
C tvvnrnnens NOW BALANCE ..........
240 IF ((C+R) /F .GE. 0.950 % S) GO TO 270
G=1.00/F
SCALE (1) = SCALE(I) * F
NOCONV = .TRUE.
C

DO 250 J = K, N
250 A(l,d) = A(1,J) * G

DO 260 J =1, L
260 A(J,1) = A(J,1) % F

C
270 CONTINUE
C
IF (NOCONV) GO TO 190
C
280 LOW = K
IGH = L
RETURN B
C kkdkdedekdkd LAST CARD OF QXZ1L6 sdddkdcdedckiksk
END
C --- SUBPROGRAM QXZ147 --- FORMERLY KNOWN AS ROUTINE ELMHES ---
C
c __________________________________________________________
Forcesub QXZ147 (NM,N,LOW, IGH,A, INT, temy) of NP ident ME
c

INTEGER N,NM, IGH,LOW, INT (1)

REAL A(N,N),temy (1)

Shared INTEGER LA,KP1,MM1,MP1,AM
Shared Logical ilock

Shared REAL X,Y,XMUL,XMULI1

16
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Private Real tema(1000)
End Declarations

C __________________________________________________________________
C
1AM=1
Barrier
LA = IGH - 1
KP1 = LOW + 1
IF (LA .LT. KP1) GO TO 200
C
End Barrier
DO 180 .M = KP1, LA
Barrier
End Barrier
IF (ME.EQ.IAM) THEN
MMT = M - 1
X = 0.00
I
C

D0 100 J = M, IGH
IF (ABS (A(J,MM1)) .LE. ABS(X)) GO TO 100
X = A(J,MMI1)
| =J
100 CONTINUE

INT(M) = |
IF (I .EQ. M) GO TO 130
C vvennnrnns INTERCHANGE ROWS AND COLUMNS OF A .....uvnn.

DO 110 J = MM1, N
Y = A(1,J)
A(1,J) = A(M,Y)
AM,J) =Y

110 CONTINUE

DO 120 J =1, IGH
Y = A(J,!
A(J, 1)
A(J, M)
120 CONTINUE
C it END INTERCHANGE ..........
C130 IF (X .EQ. 0.00) GO TO 180
130 CONTINUE
ENDIF
Barrier
End Barrier
Barrier
fam=iam+]
if(iam.gt.NP) iam=1
End Barrier
IF (X.EQ.0.00) GO TO 1800
IF (ME.EQ.1AM) THEN
do 1301 i=m+1,igh
temy (i) =a(i,mm1) /x
if(temy (i) .ne.0.00) a(i,mml)=temy (i)
c if(a(i,mml).eq.0.00) then

(J, M)

nou .
< P~

17
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temy (i) =0.0
else

endif
" continue

AV 4
o

Y = A(l,MM])

Y=Y /X

OO0 000 00—00000

ENDIF

DO 160 | = MP1,

A(I,MMY) =Y

Al ULU UUMINIUN UNIVEKSI Y

temy (i) =a (i,mm1) /x
a(i,mml)=temy (i)

1GH

IF (Y .EQ. 0.00) GO TO 160

do 1399 j=1,igh

1399 tema (j)=0.0

jend={({(igh-m) /8) %8

Barrier
iam=iam+]

if (1AM.GT.NP) |AM=]

End 3arrier
Barrier
End Barrier

c do 1400 jj=m+1,m+jend,8
Presched DO 1400 jj=m+1,m+jend,8

CDIRS IVDEP

do 1401 j=1,m-1
c a(j,m=a(j,m)+temy (jj)*a(j,jj)+temy (jj+1)*a(j,jj+1)
tema (j)=tema (j)+temy (jj) *a (j,jj)+temy (jj+1)*xa (j,jj+1)

+temy (jj+2) *a (j,jj+2)+temy (jj+3) *a (j,ji+3)

2 +temy (jj+4) *a (j, jj+b) +temy (jj+5) *a (j, jj+5)
3 +temy (jj+6) *a (j,jj+6) +temy (jj+7) *a (j,jj+7)

1401 continue
1400 End Presched DO

Barrier

End Barrier

Presched DO 1402 jj=jend+1+m,igh
CDIRS IVDEP

do 1403 j=1,m-1
1403 tema (j) =tema (j)+temy (jj) *a (j,jj)
1402 End Presched DO

Barrier

End Barrier

Critical ilock

do 14001 j=1,m-1 -
14001 a(d,M) = a(J,M) + tema(])

End Critical

Barrier

End Barrier

Presched DO 1411 jj=m+1,n
CDIRS IVDEP

do 1412 ii=m+1,igh

1412 al(ii,jjd=a(ii,jj)-a(m,jj)*temy(ii)
1411 End Presched DO

Barrier

18
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End Barrier
|F(ME.EQ.|AM) THEN
do 1407 kk=m+1,igh
xmul=temy (kk)

xmul 1=xmul%a (m, kk)

c write(*,%) a(kk,m)
< a (kk,m)=a (kk,m) -temy (kk) *a (m,m)
a(kk,m)=a (kk,m) -xmul*a (m,m)
CDIRS IVDEP
do 1608 ik=m,kk
1608 a(ik,m)=a(ik,m)+xmul*a (ik,kk)
CDIRS IVDEP
do 1609 ik=kk+1,igh
1609 a(ik,m)=a(ik,m)+xmul*a (ik,kk)+xmullxtemy (ik)
c write (*,%) a(kk,m),temy (kk),a(m,m)
1407 continue
ENDIF
1800 continue
c DO 140 J = M, N
¢ 140 A(1L,0) = A(l,J) =Y % A(M,J)
C
[ DO 150 J =1, IGH
¢ 150 A(J,M) = A(J,M) + Y % A(J,1)
C
c 160 CONTINUE
C

c801 write(®,%)' M-th step A(i,mml-n) igh,jend =',M,igh,jend
c do 1500 11=1,N
< write (*,1501) (a(ii,jj),jj=mml,n)
¢500 continue
¢501 format (1x,10(e9.3,1x))
Barrier
FAM=[ AM+1
IF (1AM.GT .NP) TAM=1
End Barrier
180 CONTINUE
C
200 RETURN
c kdcdedkakikik LAST CARD OF QXZ1h47 Fddewkddksks

Cx% THIS PROGRAM VALID ON FTNL AND FTN5 %%
END
SUBROUTINE BALANC (NM,N,A,LOW, |GH,SCALE)

INTEGER 1,J,K,L,M,N,JJ,NM, IGH,LOW, IEXC
REAL A(N,N),SCALE (N)

REAL C,F,G,R,S,B2,RADIX

LOGICAL NOCONV

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE BALANCE,
NUM. MATH. 13, 293-30L4(1969) BY PARLETT AND REINSCH. :
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).

TH1S SUBROUTINE BALANCES A REAL MATRIX AND ISOLATES
EIGENVALUES WHENEVER POSSIBLE.

sNeNesNeNeNe el el
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ON INPUT

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT.

N IS THE ORDER OF THE MATRIX.
A CONTAINS THE INPUT MATRIX TO BE BALANCED.
ON OUTPUT
A CONTAINS THE BALANCED MATRIX.
LOW AND IGH ARE TWO INTEGERS SUCH THAT A(I,J)
IS EQUAL TO ZERO IF
(1) t 1S GREATER THAN J AND
(2) J=1,...,LOW-1 OR I=IGH+1,...,N.

SCALE CONTAINS INFORMATION DETERMINING THE
PERMUTATIONS AND SCALING FACTORS USED.

SUPPOSE THAT THE PRINCIPAL SUBMATRIX IN ROWS LOW THRQOUGH IGH
HAS BEEN BALANCED, THAT P(J) DENOTES THE INDEX INTERCHANGED
WITH J DURING THE PERMUTATION STEP, AND THAT THE ELEMENTS
OF THE DIAGONAL MATRIX USED ARE DENOTED BY D(i,J). THEN

SCALE(J) = P(J), FOR J = 1,...,L0W-1
= D(J,J), J = LOW,...,IGH
= P(J) J = IGH+1,...,N.

THE ORDER IN WHICH THE INTERCHANGES ARE MADE IS N TO IGH+I1,
THEN 1 TO LOW-1.

NOTE THAT 1 IS RETURNED FOR IGH IF IGH IS ZERO FORMALLY.
THE ALGOL PROCEDURE EXC CONTAINED IN BALANCE APPEARS IN
BALANC IN LINE. (NOTE THAT THE ALGOL ROLES OF IDENTIFIERS
K,L HAVE BEEN REVERSED.)

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED AUGUST 1983.

nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnhnnnnnnn

RADIX = 16.0EO

c

B2 = RADIX * RADIX

K=1

L =N

GO TO 100
C i IN-LINE PROCEDURE FOR ROW AND
C COLUMN EXCHANGE ..........

20 SCALE(M) = J
IF (J .EQ. M) GO TO 50

20
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o3 I =1, 1
F=A(,J)
A(L,Jd) = A(I,M)
A(I,M) =F

CONT INUE

DO 4O 1 =K, N
F=Aa0,1)
A(J, 1) = A(M, 1)
A(M,1) =F

CONT INUE

GO TO (80,130), IEXC
.......... SEARCH FOR ROWS ISOLATING AN EIGENVALUE

AND PUSH THEM DOWN ....ouvw..
IF (L .EQ. 1) GO TO 280
L=1L -1
.......... FOR J=L STEP =1 UNTIL 1 D0 == +enveunnns

po 120 Ju =1, L
J=L+1-JJ

Do 1101 =1, L

IF (I .EQ. J) GO TO 110

IF (A(J,1) .NE. 0.0EOQ) GO TO 120
CONTINUE

M=l

I[EXC = 1

GO TO 20
CONTINUE

GO TO 14O

.......... SEARCH FOR COLUMNS ISOLATING AN EIGENVALUE

AND PUSH THEM LEFT ......cen.

DO 170 J =K, L

DO 150 | =K, L

IF (I .EQ. J) GO TO 150

IF (A(1,J) .NE. 0.0EO) GO TO 170
CONTINUE

M=K
FEXC = 2
GO TO 20
CONTINUE
.......... NOW BALANCE THE SUBMATRIX IN ROWS K TO L
DO 180 I =K, L
SCALE (1) = 1.0E0

.......... ITERATIVE LOOP FOR NORM REDUCTION .......

NOCONV = .FALSE.

DO 270 | =K, L
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c
R

0.0E0
0.0E0

DO 200 J =K, L
IF (J .EQ. 1) GO TO 200
C=C+ ABS(A(J, 1))
R =R+ ABS(A(1,J))
CONTINUE
.......... GUARD AGAINST ZERO C OR R DUE TO UNDERFLOW ..........
F (C .EQ. 0.0E0 .OR. R .EQ. 0.0E0) GO TO 270
R / RADIX
1.0E0
C+R
€ .GE. G) 60 TO 220
F % RADIX
C * B2
0 70 210
R % RADIX
C .LT. G) GO TO 240
F / RADIX
C / B2
0 230
.......... NOW BALANCE ..........
IF ((C+R) /F .GE. 0.95E0 * S) GO TO 270
G=1.0e0 / F
SCALE (1) = SCALE(1} = F

NOCONV = .TRUE.

DO 250 J = K, N

A(l,Jd) = A(1,J) * G

DO 260 J = 1, L

A(d,1) = A(J,I1) *F
CONT INUE

IF (NOCONV) GO TO 190

LOW = K

IGH = L

RETURN

END

SUBROUTINE HQR {NM,N,LOW, IGH,H,WR,WI, | ERR)

INTEGER 1,J,K,L,M,N,EN,LL,MM,NA,NM, IGH, ITN, ITS,LOW,MP2,ENM2, | ERR
REAL H(N,N) ,WR(N),WI (N)

REAL P,Q,R,S,T,W,X,Y,ZZ,NORM,TST1,TST2

LOGICAL NOTLAS

THIS SUBROUTINE 1S A TRANSLATION OF THE ALGOL PROCEDURE HQR,
NUM. MATH. 14, 219-231(1970) BY MARTIN, PETERS, AND WILKINSON.
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 359-371(1971).

THIS SUBROUTINE FINDS THE EIGENVALUES OF A REAL
UPPER HESSENBERG MATRIX BY THE QR METHOD.
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ON [INPUT

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT.

N IS THE ORDER OF THE MATRIX.

LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING
SUBROUTINE BALANC. |F BALANC HAS NOT BEEN USED,
SET LOW=1, IGH=N.

H CONTAINS THE UPPER HESSENBERG MATRIX. [INFORMATION ABOUT
THE TRANSFORMATIONS USED IN THE REDUCTION TO HESSENBERG
FORM BY ELMHES OR ORTHES, IF PERFORMED, IS STORED
IN THE REMAINING TRIANGLE UNDER THE HESSENBERG MATRIX.

ON OUTPUT

H HAS BEEN DESTROYED. THEREFORE, IT MUST BE SAVED
BEFORE CALLING HQR IF SUBSEQUENT CALCULATION AND
BACK TRANSFORMATION OF EIGENVECTORS IS TO BE PERFORMED.

WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS,
RESPECTIVELY, OF THE EIGENVALUES. THE EIGENVALUES
ARE UNORDERED EXCEPT THAT COMPLEX CONJUGATE PAIRS
OF VALUES APPEAR CONSECUTIVELY WITH THE EIGENVALUE
HAVING THE POSITIVE IMAGINARY PART FIRST. |IF AN
ERROR EXIT IS MADE, THE EIGENVALUES SHOULD BE CORRECT
FOR INDICES IERR+I1,...,N.

IERR IS SET TO :
ZERO FOR NORMAL RETURN,
J IF THE LIMIT OF 30%N ITERATIONS IS EXHAUSTED
WHILE THE J-TH EIGENVALUE IS BEING SQUGHT.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED AUGUST 1983.

.......... STORE ROOTS [SOLATED BY BALANC
AND COMPUTE MATRIX NORM ..........
po 501 =1, N

DO 40 J = K, N
NORM = NORM + ABS(H(1,J))

K=1
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IF (I .GE. LOW .AND. | .LE. IGH) GO TO 50
Wi (l) = 0.0E0
50 CONTINUE

o SEARCH FOR NEXT EIGENVALUES ..........
60 IF (EN .LT. LOW) GO TO 1001
ITS = 0
NA = EN - 1
ENM2 = NA - 1
C tivernenns LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
c FOR L=EN STEP -1 UNTIL LOW DO == +.vvevunns
70 DO 80 LL = LOW, EN
L =EN+ LOW - LL
IF (L .EQ. LOW) GO TO 100
S = ABS(H(L-1,L-1)) + ABS(H(L,L})
IF (S .EQ. 0.0E0) S = NORM
TST1 = §
TST2 = TST1 + ABS(H(L,L-1))
IF (TST2 .EQ. TST1) GO TO 100
80 CONTINUE
C 0 tivivnnnns FORM SHIFT .vvvevenn.
100 X = H(EN,EN)
F (L .EQ. EN) GO TO 270
H (NA,NA)
H(EN,NA) * H(NA,EN)
IF (L .EQ. NA) GO TO 280
IF (ITN .EQ. 0) GO TO 1000
[F (ITS .NE. 10 .AND. ITS .NE. 20) GO TO 130
C tivrnnnnns FORM EXCEPTIONAL SHIFT vvvveunnn.

X
!
Y
W

DO 120

| = LOW, EN
120 H(I,1) = H{(I

1) - X

ABS (H(EN,NA)) + ABS (H(NA,ENM2))
0.75E0 % S

X

-0.4375E0 % S % S

130 ITS = ITS + 1

£ < >xWwn

ITN = ITN = 1
C e, LOOK FOR TWO CONSECUTIVE SMALL
C SUB-DIAGONAL ELEMENTS.
c FOR M=EN-2 STEP -1 UNTIL L DO -- ....cvuun,

DO 14O MM = L, ENM2
M = ENM2 + L - MM

ZZ = H(M, M)

R=X-12Z

S=Y-1Z

P=(R*S -W / H(MI,M + H(M,MNHI)
Q = H(M+1,MH1) - ZZ - R - S

R = H(M+2,M+1)

24



FILE: UNSEIG FRC Al OLD DOMINION UNIVERSIITY

BS (P) + ABS(Q) + ABS (R)

ABS (P
P/ S
Q/ S
R/ S
IF (M .EQ. L) GO TO 150
TST1 = ABS (P) * (ABS (H{M-1,M-1)) + ABS(ZZ) + ABS (H(M+1,M+1)))
TST2 = TST1 + ABS(H(M,M-1))*(ABS(Q) + ABS(R))
IF (TST2 .EQ. TST1) GO TO 150
140 CONTINUE

DO T Wn;m

C
150 MP2 = M + 2
C
DO 160 | = MP2, EN

H(1,1-2) = 0.0EO

IF (1 .EQ. MP2) GO TO 160

H(l,1-3) = 0.0E0

160 CONTINUE
C vevrnenens DOUBLE QR STEP INVOLVING ROWS L TO EN AND
c COLUMNS M TO EN .vvvvvenns
DO 260 K = M, NA

NOTLAS = K .NE. NA

IF (K .EQ. M) GO TO 170
H(K,K-1)
H(K+1,K-1)
0.0EO0
F (NOTLAS) R = H(K+2,K-1)
ABS (P) + ABS(Q) + ABS(R)
F (X .EQ. 0.0E0) GO TO 260
P/ X
Q/ X
R/ X
S| GN (SQRT (P*P+Q*Q+R*R) ,P)
IF (K .EQ. M) GO TO 180
H(K,K-1) = -S % X

P
Q
R
|
X
|
P
Q
R
S

170

180 IF (L .NE. M) H(K,K-1) = -H(K,K-1)
190

» U 0

5) GO TO 225
C tievrenans ROW MODIFICATION ..vvvevnns
DO 200 J = K, N
P=H(K,J) +Q * H(K+1,J)
H(K,J) = H(K,J) - P % X
H(K+1,J) = H(K+1,J) - P % Y
200 CONTINUE

J = MINO (EN,K+3)
C veeesnsnes COLUMN MODIFICATION ..........
Do 210 I =1, J
P=X%xH({U,K +Y % H({I,K+1)
H('!K) = H(I,K) - P
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H{l,K+1) = H{I,K+1) - P % Q
CONTINUE
GO TO 255
CONTINUE
.......... ROW MODIFICATION ..ovvvennn.
DO 230 J = K, N
P=H(K,J) +Q * H(K+1,J) + R % H(K+2,J)
H(K,J) = H(K,J) - P % X
H(K+1,J) H(K+1,J) - P % Y
H(K+2,J) H{(K+2,J) - P * ZZ
CONTINUE

J = MINO (EN,K+3)
.......... COLUMN MODIFICATION vvvvuvunn.

DO 240 | =1, J
P=X% H(I,K) + Y % H(I,K+1) + ZZ * H(I,K+2)
H{I,K) = H(lI,K) - P
H(!,K+l) = H(I,K+1) - P
H(I,K+2) = H(I,K+2) -'P

CONTINUE

CONTINUE

*Q
* R

CONTINUE

.......... ONE ROOT FOUND ..........
WR(EN) = X + T

Wi (EN) = 0.0EO

EN = NA

GO TO 60

.......... TWO ROOTS FOUND ..........
- X) / 2.0E0

P+
T(ABS(Q))

T

T. 0.0E0) GO TO 320

.......... REAL PAIR ... .vvuss

ZZ = P + SIGN(ZZ,P)

WR(NA) = X + ZZ

WR (EN) = WR (NA)

IF (ZZ .NE. 0.0EQ) WR(EN) = X - W / ZZ
Wi (NA) = 0.0EO

Wi (EN) = 0.0EO

GO TO 330

verreven. » COMPLEX PAIR ........ .

WR(NA) = X + P
WR(EN) = X + P
Wi (NA) = ZZ
Wi (EN) = -ZZ
EN = ENM2
GO TO 60 --
.......... SET ERROR -- ALL EIGENVALUES HAVE NOT
- CONVERGED AFTER 30#N ITERATIONS ..........
IERR = EN C
RETURN-.
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END
Forcesub OELMHS (NM,N,LOW, IGH,A,RINDEX) of NP ident ME

REAL
+ A(N,N), RINDEX(IGH)
INTEGER
+ IGH, LOW, N, NM
REAL
+ X, Y
Shared INTEGER KP1,LA,MM1,MPI]
End Declarations

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ELMHES,
NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON.
HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE
REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS
LOW THROUGH IGH TO UPPER HESSENBERG FORM BY
STABILIZED ELEMENTARY SIMILARITY TRANSFORMATIONS.

ON INPUT

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL
ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM
DIMENSION STATEMENT.

N IS THE ORDER OF THE MATRIX.

LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING
SUBROUTINE BALANC. [|F BALANC HAS NOT BEEN USED,
SET LOwW=1, IGH=N.

A CONTAINS THE INPUT MATRIX.

ON OUTPUT

A CONTAINS THE HESSENBERG MATRIX. THE MULTIPLIERS
WHICH WERE USED IN THE REDUCTION ARE STORED IN THE
REMAINING TRIANGLE UNDER THE HESSENBERG MATRIX.

RINDEX CONTAINS INFORMATION ON THE ROWS AND COLUMNS
INTERCHANGED IN THE REDUCTION.

ONLY ELEMENTS LOW THROUGH IGH ARE USED.

QUESTIONS AND COMMENTS SHOULD BE D!RECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED AUGUST 1983.

OO0 0O0OOO0O0O0O00000O0O00O00 0000000000000 0000000000000

LA = IGH - 1
: KP1 = LOW + 1
IF (LA .LT. KP1) RETURN
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Barrier

Do 180
MM1
X

M
0.
I M

DO 100 J = M, IGH
IF (ABS(A(J,MMT)) .LE. ABS(X)) GO TO 100
X = A(J,MM1)
I =J
100 CONTINUE

RINDEX (M) = REAL(I)
IF (1 .EQ. M) GO TO 130
C vvnnnnenn INTERCHANGE ROWS AND COLUMNS OF A ..v.uvunn..

DO 110 J = MM1, N
Y = A(1,J)
A(l,0) = A(M,J)
A(M,J) =Y

110 CONTINUE

DO 120 J = 1, IGH
Y = A(J, 1)
A(U,1) = A(U,N
A(J,M) =Y
120 CONTINUE
C i END INTERCHANGE ..........
130 IF (X .EQ. 0.0DO) GO TO 180
MP1 = M + 1

DO 160 | = MP1, IGH
Y = A(l,MM])
IF (Y .EQ. 0.0DO) GO TO 160
Y=Y/X

A (1, MM1) Y

DO 140 J M, N -
140 A(l,J) (1,d) =Y % A(M,J)

1l
> |

=1, IGHi
A(J,M) + Y % A(J,1)

(S

DO 150
150 A(J,M)

160 CONTINUE
180 CONTINUE

End Barrier

RETURN

END

SUBROUTINE QXZ1521 (NM,N,LOW, IGH,H,WR,WI, 1ERR)

INTEGER I,J,K,L,M,N,EN,LL,MM,NA,NM, IGH, ITN, ITS,LOW,MP2,ENM2, [ERR

REAL H(N,N),WR(N),WI(N)
REAL P,Q,R,S,T,W,X,Y,ZZ,NORM,TST1,TST2

28

AL T AL |



FILE: UNSEIG FRC Al ULU UUMINIUN UNIVERSHIY

LOGICAL NOTLAS

c
IERR = 0
NORM = 0.00
K =1
C teeeeniees STORE ROOTS ISOLATED BY QXZ1k6
C AND COMPUTE MATRIX NORM ..........
DO5C I =1, N
C
DO 40 J =K, N
Lo NORM = NORM + ABS (H(l,J))
c
K= 1
IF (I .GE. LOW .AND. | .LE. IGH) GO TO 50
WR(1) = H(I,1)
Wi (l) = 0.00
50 CONTINUE
c
EN = IGH
T =0.00
ITN = 30%N
C e SEARCH FOR NEXT EIGENVALUES ..........
60 IF (EN .LT. LOW) GO TO 1001
ITS = 0
NA = EN - 1
ENM2 = NA - 1
C e LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT
C FOR L=EN STEP -1 UNTIL LOW DO -- ...vvuvun.n
70 DO 80 LL = LOW, EN
L =EN+ LOW - LL
IF (L .EQ. LOW) GO TO 100
S = ABS(H(L-1,L-1)) + ABS(H(L,L))
IF (S .EQ. 0.00) S = NORM
TST1 =S
TST2 = TST1 + ABS(H(L,L-1))
IF (TST2 .EQ. TST1) GO TO 100
80 CONTINUE
C eveennnns FORM SHIFT ...veeenss
100 X = H(EN,EN)
iF (L .EQ. EN) GO TO 270
Y = H(NA,NA)
W = H(EN,NA) * H(NA,EN)
IF (L .EQ. NA) GO TO 280
IF (ITN .EQ. 0) GO TO 1000
IF (ITS .NE. 10 .AND. ITS .NE. 20) GO TO 130
C veeniines FORM EXCEPTIONAL SHIFT ....oveeens
write(%,%) '%% EN, T X =',EN,T,X
T=T+X
C
DO 120 | = LOW, EN
120 H(1,1) = H(1,1) - X
c
S = ABS(H(EN,NA)) + ABS (H(NA,ENM2))
X =0.750 * §
Y=X
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W= -0.43750 * 5§ % S
ITS = ITS + 1
TN = TN - 1

.......... LOOK FOR TWO CONSECUTIVE SMALL
SUB-DIAGONAL ELEMENTS.

FOR M=EN-2 STEP -1 UNTIL L DO ~- .vv.n....

DO 140 MM = L, ENM2
M =ENM2 + L - MM
ZZ = H(M,M)
X - 7Z
Y - 22
(R*S -wW /HMHI,M + HM MDD
H(M+1,M+1) - ZZ - R - §
H{M+2,M+1)
ABS (P) + ABS(Q) + ABS(R)
P/S
Q/S
R/ S
IF (M .EQ. L) GO TO 150

O VDKV UVO VKB
{LIN Y T N I T ]

TST1 = ABS(P)*(ABS(H (M-1,M-1)) + ABS(ZZ) + ABS (H (M+1, M+1)))

TST2 = TST1 + ABS (H(M,M- l))*(ABS(Q) + ABS(R))
IF (TST2 .EQ. TST1) GO TO 150
CONTINUE

150 MP2 = M + 2

C

160

170

180
190

DO 160 | = MP2, EN
H{I,1-2) = 0.00
IF (I .EQ. MP2) GO TO 160
H(l,1-3) = 0.00

CONTINUE

.......... DOUBLE<QR STEP INVOLVING ROWS L TO EN AND

COLUMNS M TO EN ..cenvunnn.

DO 260 K = M, NA

NOTLAS = K .NE. NA

IF (K .EQ. M) GO TO 170
P = H(K,K-1)
Q = H(K+1,K-1)
R = 0.00
IF (NOTLAS) R = H(K+2,K-1)
X = ABS(P) + ABS(Q) + ABS(R)
I
P
Q
R
S

F (X .EQ. 0.00) GO TO 260

P/ X

Q/ X

R/X

SIGN(SQRT(P*P+Q*Q+R*R) P)

IF (K .EQ. M) GO TO 180

H(K,K-1) = -§ * X

GO TO 190

IF (L .NE. M) H{K,K-1) = -H(K,K-1)

P=P+S
X=P /S
Y = Q /S
ZZ=R/S
Q=Q/FP
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R=R/P
IF (NOTLAS) GO TO 225
C 0 vrvennnns ROW MODIFICATION vvveenrnns
DO 200 J = K, N
P=H(K,J) + Q % H(K+1,J)
H(K,J) = H(K,J) - P % X
H(K+1,J) = H(K+1,J) - P % Y
200 CONT INUE

C
J = MINO (EN,K+3)
C  iieverans COLUMN MODIFICATION ..vvvevvens
Do 2101 =1, J )
P=2X®H(,K +Y % H(l,K+1)
H(I,K) = H(I,K) - P
H{l,K+1) = H(I,K+1) - P % Q
210 CONTINUE
GO TO 255
225 CONTINUE
C et ROW MODIFICATION ....c0ce.
DO 230 J = K, N
P=H(K,J) + Q % H(K+1,J) + R * H(K+2,J)
H(K,J) = H(K,J) - P % X
H(K+1,J) = H(K+1,J) - P %Y
H(K+2,J) = H(K+2,J) - P * ZZ
230 CONTINUE
C
J = MINO (EN,K+3)
C iivennnns COLUMN MODIFICATION ..iveneens

DO 240 | =1, J
P=X%H({,K +Y * H(,KH1) + ZZ * H(I,K+2)
H(l,K) = H(I,K) - P
H(l,K+1) H(I,K+1) - P % Q
H(l,K+2) H(l,K+2) - P * R
240 CONTINUE
255 CONTINUE

C
c write (%,%) "NOTLAS,K,H (K,K)="',NOTLAS,K,H (K,K)
260 CONTINUE
C
GO TO 70
C it ONE ROOT FOUND ..........
270 WR(EN) = X + T
W1 (EN) = 0.00
EN = NA
GO TO 60
C  teevvvnens TWO ROOTS FOUND ..........
280 P = (y - X) / 2.00
Q=P %P +W
ZZ = SQRT (ABS (Q))
X=X+T
c *%kk% the following if is added by Qin %%
IF( Q.LT.0.00) go to 320
C  iiiiennesn REAL PAIR c.veevnenn

ZZ = P + SIGN(ZZ,P)
WR(NA) = X + ZZ
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WR (EN) = WR(NA)
IF (ZZ .NE. 0.00) WR(EN) = X - W / ZZ

Wi (NA)

0.

Wi (EN) = 0.
GO 7O 330

320 WR(NA)
WR (EN)

W1 (NA)

- WI(EN)
330 EN = ENM2

---------

44
-z

tounonn

GO TO 60

1000 |

ERR = EN

1001 RETURN
END

11

subroutine
implicit r

00
00

COMPLEX PAIR .ivvvvvenn

X+ P
X+ P

z

SET ERROR -- ALL EIGENVALUES HAVE NOT
CONVERGED AFTER 30*#N ITERATIONS ..........

ascend (n,er,ei,wk)
eal*8 (a-h,0-2)

real er (1),ei (1) ,wk(n,1)

do 1 i=1,n
smal1=9999
do 2 j=1,n
if(er(j).

999995.

lt.small ) then

small=er (j)

locate=j
wk (i,1)=er
wk {i,2)=ei
endif
continue
er {(locate)
continue

do 21 i=l,
er (i)=wk (i
ei (1) =wk (i

write{6,%)
do 11 i=n-
write (6, %)
continue
return

end

(J)
(i)

=999999999.

n
1)
,2)

‘real & imaginary evalues in ascending order!'

10,n
i,er(i),eid(i)
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