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Abstract

The popular QR algorithm for solving all eigenvalues of an unsymmetric matrix is

reviewed. Among the basic components in the QR algorithm, it has been concluded from

this study, that the reduction of an unsymmetric matrix to a Hessenberg form (before

applying the QR algorithm itself) can be done effectively by exploiting the vector speed and

multiple processors offered by modern high-performance computers.

Numerical examples of several test cases have indicated that the proposed parallel-vector

algorithm for converting a given unsymmetric matrix to a Hessenberg form offers

computational advantages over the existing algorithm. The time saving obtained by the

proposed method is increased as the problem size increased.

I. Introduction

The algorithms for symmetric matrices [1-3] are highly satisfactory in practice. By

contrast, it is impossible to design equally satisfactory algorithms for the nonsymmetric cases,

which is needed in Controls-Structures Interaction (CSI) applications [1,4]. There are two

reasons for this. First, the eigenvalues of a nonsymmetric matrix can be very sensitive to

small changes in the matrix elements. Second, the matrix itself can be defective, so that there

is no complete set of eigenvectors.

There are several basic building blocks in the QR algorithm, which is generally regarded

as the most effective algorithm, for solving all eigenvalues of a real, unsymmetric matrix.

These basic components of the QR algorithm are reviewed in Section II. Basic techniques

to exploit the vector speed and multiple processors offered by modern high-performance

computers are explained in Section III. An analysis of the Hessenberg reduction component

in the QR algorithm is given in Section IV where both vector and parallel techniques are

incorporated into the Hessenberg reduction component. Numerical examples are provided

in Section V to evaluate the performance of the proposed method over the existing one.

Conclusions and recommendations are given in Section VI. Finally, a listing of the

Hessenberg reduction algorithm (in the form of Fortran coding) is provided in the appendix.

II. Basic Components of the QR Algorithm [3,5]

2.1 Balancing:



Theideaof balancing is to use similarity transformations to make corresponding rows and

columns of the matrix have comparable norms, thus reducing the overall norm of the matrix

while leaving the eigenvalues unchanged.

The time taken by the balanced procedure is insignificant as compared to the total time

required to find the eigenvalues. For this reason, it is strongly recommended that a

nonsymmetric matrix need to be balanced before even attempting to solve for eigen-
solutions.

2.2 Reduction to Hessenberg form:

The strategy for finding the eigensolution of an unsymmetric matrix is similar to that of

the symmetric case. First we reduce the matrix to a simpler Hessenberg form, and then we

perform an iterative procedure on the Hessenberg matrix. An upper Hessenberg matrix has

zeros everywhere below the diagonal except for the first subdiagonal. For example, in the
6 x 6 case, the nonzero elements are:

X X X X X X

X X X X X X

0 X X X X X

0 0 X X X X

0 0 0 X X X

0 0 0 0 X X

Thus, a procedure analogous to Gaussian elimination can be used to convert a general

unsymmetric matrix to an upper Hessenberg matrix. The detailed coding of the Hessenberg

reduction procedure is listed in subroutine OELMHS of the appendix.

Once the unsymmetric matrix has already been converted into the Hessenberg form, the

QR algorithm [3,5] itself can be applied on the Hessenberg matrix to find all the real and

complex eigenvalues. For completeness, detailed coding of the QR algorithm on the

Hessenberg matrix is listed in subroutine HQR of the appendix.

III. Basic Techniaues For Vector and Parallel Speeds

In this section, a simple example of matrix times vector is used to explain some basic

vector and parallel techniques which are useful for Hessenberg reduction algorithm.

Given a 3x3 Matrix A = 2 - and a

-1

vector x = {1,0,0} r

Here, the dimension of the system is N=3. The objectives are to develop efficient parallel -
vector matrix times vector subroutines.
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3.1 Row-by-Rowconventionalapproach:

DO1 I=I,N

DO 2 J=I,N

B(1) = B(1) +A(I,J) *x(J)
2 Continue

1 Continue

It should be emphasized here that in this approach, the value of B(I) corresponds to the
final answer.

3.2 Column-by-Column conventional approach:

DO1 J = I ,N
DO 2 I = 1 ,N

B(O = B(1) + a(l,J) • x(J)
2 Continue

1 Continue

It should be emphasized here that in this approach, the value of B(I) does NOT

correspond to the final answer. B(I) only gives the _ (or incomplete) answer and it will

give the final answer only if all values of J have been executed. It is also observed that x(J)

is a constant (with respect to loop 2), thus the operations involved in loop 2 can be stated

generally as: A new vector B = Old vector B + Constant * another vector A.

3.3 Row-by-Row "vector unrolling" approach:

Assuming the dimension N of the system is large, say N = 600, then the algorithm in

Section 3.1 can be modified to improve the vector speed as following:

NUNROL = 2

DO1 I= 1,N, NUNROL

DO 2 J = 1 ,N
B(/) -- B(/) + a(/,.0 • x(J)
B(I+I) = B(I+I) + A(I+I,J) * x(J)
2 Continue

1 Continue

The operations involved inside loop 2 is referred to as "dot product" operations.

3.4 Column-by-Column "loop-unrolling" approach

The algorithm in Section 3.2 can be modified to improve the vector speed performance



NUNROL = 2

DO1 J = 1,N, 1VUNROL

DO2 I=I,N

B(/) -- B(/) + a(/,J) • x(J)
+ A(/,./+I) • x(S+l)

2 Continue

1 Continue

The operations involved inside loop 2 is referred to as "saxpy" operations.

3.5 Parallel-vector loop-unrolling approach:

For multiple processors, the algorithm in Section 3.4 can be modified to take advantage

of parallel speed (in addition to vector speed)

NUNROL = 2

Parallel DO 1 J = 1 ,N, NUNROL

DO2 I=I,N

B(I) = B(/) + a(I,J) * x(J)

+ A(t,J+l) • x(J+l)
2 Continue

1 Continue

In this algorithm, each value of the index J (of loop 1) is assigned to different processors for

parallel computation.

IV. An Analysis of the Hessenberg Reduction Algorithm

A careful look into the Hessenberg reduction algorithm of Section 2.2 and subroutine

OELMHS of the appendix will reveal that the most intensive computations of Subroutine

OELMHS occur in loops 140 and 150 of the code. Furthermore, the Fortran statement

inside loop 150 can be generally expressed as:

A(J, M) = A(J,M) + Y * A(J,I)

or

A new vector A(J, -) = old vector A(J, -) + (a constant) * another vector A(J,*)

Thus, one can immediately see the similarity between loops 160 & 150 of Subroutine

OELMHS and loops 1 & 2 of the matrix times vector algorithm presented in Section 3.2.

From the experience we have had in section 3.5, we can therefore similarly apply the parallel

computations in loop 160 and loop-unrolling (here NUNROL = 8 is used) for vector

computations in loop 150 of subroutine OELMHS.

For completeness, the entire parallel-vector version of the Hessenberg reduction, and the

original QR algorithms are listed in the Appendix.
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V. Numerical Examples

In order to evaluate the numerical accuracy and the performance of the new parallel-

vector Hessenberg Reduction portion of the QR algorithm, the following numerical tests are

performed.

Example 1:

Find all eigenvalues of the following 2 x 2 unsymmetrie matrix

The analytical eigen-value solution for this problem is:

which also matches with the computer solution.

Example 2:

In this example, the unsymmetric matrix [A]N_ is automatically generated for any dimension

N of the matrix [A] (please refer to the code given in the Appendix). The accuracy and the

performance of the new parallel-vector Hessenberg reduction algorithm is compared to the

original subroutine. Since the QR algorithm itself is highly sequential, no attempts to

parallelize and vectorize the QR algorithm have been made. However, the total solution

time of the complete unsymmetric eigensolution process (= Hessenberg Reduction Time and

QR Time) are also presented in Tables 1 and 2.



Table 1: Vector Performance on the Alliant Using etime (t), fortran -DAS -O -alt -1 -OM
where:

1 option will tell which loop does not vectorize

OM option will not print warning messages

Size N

100 x 100

200 x 200

400 x 400

"Original" CSI version

'HR - Hessenberg'

Reduction Time

QR Time ,

'0.41 sec'
i

,0.97 secj

_2.210 see]
_5.195 see)

'16.9)

33.9)

"New" version

_0.39 see'

_0.97 see

3314"00

.93)

600 x 600 '55.48' '51.0 /

,94.20, ,94.2/

'161.6' "119 /800 X 800 /

, N/A , IN/A)
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Table 2: Parallel-Vector Performance on Cray-YMP (Reynolds) Using tsecnd 0.

Size N

100 x 100

200 x 200

400 x 400

600 x 600

800 x 800

"Original" CSI version

_HR = Hessenberg_

i Reduction Time

QR Time

1 Cray-YMP Processor

0.02 sec'
0.07 sec I,

72.90'
.12_

'14.34 /
33.25)

1 Cray-YMP
Processor

"New" version

2 Cray-YMP
Processors

3 Cray-YMP
Processors

0.07'
0.41,

30.27'
.19,

335"17
.31)

VI. Conclusions and Recommendations:

The most popular and effective procedure to solve all eigenvalues of an unsymmetric
matrix involved 2 major tasks, namely Hessenberg reduction form and QR algorithm on the

Hessenberg matrix. In general, QR algorthm requires between 2 to 3 times more

computational effort than the Hessenberg reduction algorithm.
In this study, the parallel and vector speeds of the Hessenberg reduction algorithm has

been developed and implemented on the Alliant and Cray-YMP (Reynolds) computers.

Numerical results have indicated that the proposed parallel-vector Hessenberg reduction
algorithm does offer computational advantages (without losing its accuracy) as compared to

the existing algorithm. The time saving is more significant as the problem size increased.
Further research work is critically needed to improve the unsymmetric eigensolution

procedure (using the QR, or another better, new parallel algorithm).
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FILE: UNSEIG FRC A! OLD DOMINION UNIVER311Y

C..... PARALLEL/VECTOR UNSYMMETRIC EIGENSOLVER by Qin & Nguyen,May 1992 **

c ...... Thls is a working version of "unsymmetrical" eigen-soIver

c ...... on the sun386 work station. On the Cray-YMP (Reynold or Sabre),

c ...... this "exact" same version should offer good vector & parallel

c ...... speed (only for subroutine to perform Hessenberg reduction).

c ...... For SMALL problems, the improvements due to parallel-vector

c ...... Hessenberg is NOT MUCH. However, for LARGE problems, since the

c ...... Hessenberg reduction timing becomes more important (as compared to

c ...... the TOTAL eigen-soIution time), the total time saving for the entire

c ...... eigen-solution process is also very significant.

c ...... Since this version was developed specifically for CSl applications

c ...... (according to Peiman's specifications/requirements),ALL EIGENVALUES

c ...... (and NONE of the corresponding EIGENVECTORS) of an N by N squared

c ...... unsymmatrica] matrix are found.
c ...... "ARTIFICIAL" datas of varous sizes (N = 2 .... > BOO) with ALL REAL

c ...... and MIXED REAL & COMPLEX eigenvalues have been verified (by comparing

c ...... the results obtained by the original unsym, eigen-so], taken from

c ...... ORACLE and the modified version from the ODU team, and also by HAND

c ...... CALCULATION for the size N = 2)

Force PVQR of NP ident ME

Shared REAL A(IOOOOOO),WK(1000,2)

Shared REAL ER(IOOO),EI (IO00),EIG(IO00)

Shared REAL EPS,ERRCK

Shared INTEGER N,NM,NMM,NMAX,NST,MQ, IMODE,IERR,nguyen

End Declarations

C *** THIS IS THE PROGRAM CALL UNSYMMETRIC EIGENSLVER ****#cmm,

Barrier

WRITE(*,*) 'N,IMODE(O=old version),nguyen(l=duc-s data) ='

READ (5,#() N,imode,nguyen

WRITE(*,m) 'N IMODE NGUYEN =' ,N, iMODE,nguyen

ERRCK= 0.000000l

eps=geteps (ibeta, it, irnd)

write(_,*) '*** EPS =',eps

write (m, lOl) N, imode

lOl FORMAT(//,' INPUT PARAMETERS:',/,

I 'N = ',15,' - Size of System'//,

I 'IMODE= ',15,' - = 0 is old sequential'//)

End Barrier

ForcecaI1 RESV(N,N,A,ER,EI,WK, IERR,EIG,IMODE,nguyen)

Join

END

FUNCTION GETEPS(IBETA, IT, IRND)

a- 1.0

lO a=a+a

if(((a+1.0)-a)-l.O.eq.O.O0) go to 10
b=1.0

b=b+b

if ((a+b)-a.eq.O.O0) go to 20

q ina= (a+b) -a
ibeta=i nt (qi na)

beta=fIoat(ibeta)
it=O

b=l .0

it= it+I

b=b*beta

2O

30
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if (((b+l.O)-b)-l.O.eq.O.OO)go to 30
irnd=O

betaml=beta-l.0

if((a+betaml)-a.ne.O.OO)irnd=l

betain=l.0/beta

a=l.O

do 40 i=l,it+3

a=a*betain

40 continue

50 if((l.O+a)-l.O.ne.O.OO)go to 60

a=a*beta

go to 50
60 eps=a

if ((ibeta.eq.2) .or. (irnd.eq.O))go to 70

a= (a* (1.0+a)) / (1.0+1.0)

if ((I .O+a) -I .O.ne.O.OO) eps=a

70 geteps=eps

return

end

Forcesub RESV(MAX,N,A,ER,EI,WK, IERR,EIG, IMODE,nguyen) of NP

$ ident ME

INTEGER MAX,N, IERR, IMODE

Shared Integer LOW, IGH,NACC

C F2.4

C ****

C FUNCTION

C PARAMETERS

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C OUTPUT FORMAT

C

C

C

C

C

C

C

C

C

C

C

ER(N)
El(N)
WK (-)

- COMPUTES ALL THE EIGENVALUES AND SELECTED

MAX - MAXIMUM ROW DIMENSION OF A

N - ORDER OF A

A(MAX,N) - INPUT MATRIX (DESTROYED)

- CONTAINS REAL PART OF THE EIGENVALUES

- CONTAINS IMAGINARY PART OF THE EIGENVALUES

- WORKING STORAGE OF FOLLOWING DIMENSION

DIMENSION 3*N IF ISV+ILV = O

DIMENSION N*(N+7) OTHERWISE

IERR - INTEGER ERROR CODE

= O NORMAL RETURN

= -J J-TH EIGENVECTOR DID NOT CONVERGE.

VECTOR SET TO ZERO. IF FAILURE OCCURS

MORE THAN ONCE, INDEX FOR LAST

OCCURRENCE IN IERR.

= J J-TH EIGENVALUE HAS NOT BEEN

DETERMINED AFTER 30 ITERATIONS

- EIGENVALUES ARE STORED IN ASCENDING MAGNITUDE

WITH COMPLEX CONJUGATES STORED WITH POSITIV

IMAGINARY PARTS FIRST. THE EIGENVECTORS ARE

PACKED AND STORED IN V IN THE SAME ORDER AS

THEIR EIGENVALUES APPEAR IN ER AND El.

ONLY ONE EIGENVECTOR IS COMPUTED FOR COMPLE

CONJUGATES (FOR CONJUGATE WITH POSITIVE

IMAGINARY PART). UPON ERROR EXIT -J, EIGEN-

VALUES ARE CORRECT AND EIGENVECTORS

ARE CORRECT FOR ALL NON-ZERO VECTORS.

UPON ERROR EXIT J, EIGENVALUES ARE CORRECT

BUT UNORDERED FOR INDICES IERR+I,IERR+2,...
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C N AND NO EIGENVECTORS ARE COMPUTED.

C REQUIRED ROUTINES - Qxz146,QXZI47,QXZ152

c ****

REAL A(N,N),ER(N),EI (N),WK(N,2),EIG(1)

End Declarations

C DIMENSION A(MAX,N),ER(N),EI (N),V(MAX,*),WK(N,*)

c LOGICAL LTESTV

c EQUIVALENCE (TESTV,LTESTV)

CQIN DATA TRUE,FALSE / '77777777777777777777'0, 'OOOOOOOOOOOOOOOOOOOO'O

CQIN +/

c DATA TRUE,FALSE / 7777777777777777777.O,O.OOOOOOOOOOOOOOOOOOO /

C ****

C PRELIMINARY REDUCTION

C ****

Barrier

DO 2 J=I,N

DO I I=I,N

if (i.lt.j) then
a (i,j) =I. 3737373737371 (float (i+j))
else

A (i,j) =O.973197319731/(f loat (i+j+j/2))

endif

l continue

2 continue

do 3 i=l,n

3 a(i, i)=float (i'i)

c ...... Duc T. Nguyen added this portion to test "complex" eigen-solution

if(nguyen.eq.l) then

DO 29 J=l,N

DO 19 I=I,N

if(i.lt.j) then

a (i,j) =-1.373737373737"IO.O/(float (i+j))
else

A (i,j)=O.973197319731"IO.O/(float (i+j+j/2))

endif

19 continue

29 continue

do 39 i=l,n

39 a(i, i)=float (i)

C" .....

a (1,1) =2.
a (I,2)=-6.
a (2, ]) =8.
a (2,2) : 1.
endif

C ***** SAVE A FOR NORM CHECK *****

low=l

igh=n

TIMEO=O.O

End Barrier

tOO=TSECNDO

c CALL QXZI46 (MAX,N,A,LOW, IGH,WK)

tlI=TSECNDO

if(imode.ne.O) then

12
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Forcecall QXZI47 (MAX,N,LOW, IGH,A,WK(I,2),eig)

else

Forcecall OELMHS(MAX,N,LOW, IGH,A,WK(I,2))

endif

T22=TSECNDO

TIMEO=TIMEO+T22-TO0

c write(6,*)'** ME CPU in QXZ146 = ',ME, Tll-TO0

write(6,*)'** ME CPU in QXZl47 (OELMHS) = ',ME,T22-Tll

if(me.eq.l) then

write(*,*)'*** --- A --- *** '

do 1122 i=n-lO,n

write(*,*)'A(',i,',n) = ',a(i,n)

1122 continue

endif

C ****

C COMPUTE ALL EIGENVALUES AND NO EIGENVECTORS

C ****

Barrier

tOO=TSECNDO

if(imode.eq.O) then

call HQR (MAX,N,LOW, IGH,A,ER,EI,IERR)

else

call qxz1521(max,n,low, igh,A,er,ei,ierr)

endif

tII=TSECNDO

write(*,*)' ** IMODE ,CPU time in QXZI52 = ',imode,tll-tO0

if(me.eq.l) then

write(*,*)' *** Eigen value#,real ER(1), imaginary El(1)

do 7 l=n-lO,n

write(*,*) l,er(i),ei(i)

7 continue

c ...... rearrange eigenvalues according to ascending order (of

call ascend(n,er,ei,wk)

endif

End Barrier

RETURN

END

C --- SUBPROGRAM QXZI46 --- FORMERLY KNOWN AS ROUTINE BALANC ---

C

C

real part)

C

C

C

C

C

C

C

C

C

SUBROUTINE QXZ146(NM,N,A,LOW, IGH,SCALE)

INTEGER I,J,K,L,M,N,JJ,NM, IGH,LOW, IEXC

REAL A(N,N),SCALE(N)

REAL C,F,G,R,S,B2,RADIX

LOGICAL NOCONV

THIS SUBROUTINE IS A TRANSLATION OF THE

NUM. MATH. 13, 293-304(1969) BY PARLETT

HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR

ALGOL PROCEDURE BALANCE,

AND REINSCH.

ALGEBRA, 315-326(1971).

THIS SUBROUTINE BALANCES A REAL MATRIX AND ISOLATES

EIGENVALUES WHENEVER POSSIBLE.

ON INPUT

13
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL

ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

DIMENSION STATEMENT.

N IS THE ORDER OF THE MATRIX.

A CONTAINS THE INPUT MATRIX TO BE BALANCED.

ON OUTPUT

A CONTAINS THE BALANCED MATRIX.

LOW AND IGH ARE TWO INTEGERS SUCH THAT A(I,J)

IS EQUAL TO ZERO IF
(1) I IS GREATER THAN J AND

(2) J=l ..... LOW-] OR I=IGH+I ..... N.

SCALE CONTAINS INFORMATION DETERMINING THE

PERMUTATIONS AND SCALING FACTORS USED.

SUPPOSE THAT THE PRINCIPAL SUBMATRIX IN ROWS LOW THROUGH IGH

HAS BEEN BALANCED, THAT P(J) DENOTES THE INDEX INTERCHANGED

WITH J DURING THE PERMUTATION STEP, AND THAT THE ELEMENTS

OF THE DIAGONAL MATRIX USED ARE DENOTED BY D(I,J). THEN

SCALE(J) = P(J), FOR J = 1..... LOW-I

= D(J,J), J = LOW ..... IGH

= P(J) J = IGH+I .... ,N.

THE ORDER IN WHICH THE INTERCHANGES ARE MADE IS N TO IGH+I,

THEN 1 TO LOW-1.

NOTE THAT | IS RETURNED FOR IGH IF 1GH IS ZERO FORMALLY.

THE ALGOL PROCEDURE EXC CONTAINED IN BALANCE APPEARS IN

QXZ146 IN LINE. (NOTE THAT THE ALGOL ROLES OF IDENTIFIERS

K,L HAVE BEEN REVERSED.)

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED AUGUST 1983.

BASED ON THE EISPACK VERSION 3 ROUTINE BALANC, AS MODIFIED
BY COMPUTER SCIENCES CORPORATION, MAY 1984.

RADIX = 16.OO

B2 = RADIX * RADIX

K = l

L = N

GO TO 100

.......... IN-LINE PROCEDURE FOR ROW AND

COLUMN EXCHANGE ..........

14
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20 SCALE(M) = J

IF (J .EQ. M) GO TO 50

DO 30 1 = l, L

F = A (I,J)

A(I,J) = A(I,M)

A (I,M) = F

30 CONTINUE

DO 40 I = K, N

F = A(J,I)

A(J,I) = A (M, I)

A(M,I) = F

40 CONTINUE

C

50 GO TO (80,130), IEXC

C .......... SEARCH FOR ROWS ISOLATING AN EIGENVALUE

C AND PUSH THEM DOWN ..........

80 IF (L .EQ. l) GO TO 280

L=L- l

C .......... FOR J=L STEP -l UNTIL l DO -- ..........

lO0 DO 120 JJ = ], L

J=L+l -JJ

C

C

C

C

C

C

C

C

II0

DO 110 I = 1, L

IF (I .EQ. J) GO TO 110

IF (A(J,I) .NE. 0.00) GO TO 120

CONTINUE

M = L

IEXC = 1

GO TO 20

120 CONTINUE

GO TO 140

.......... SEARCH FOR COLUMNS ISOLATING AN EIGENVALUE

AND PUSH THEM LEFT ..........

130 K = K + l

140 DO 170 J = K, L

15o

DO 150 1 = K, L

IF (I .EQ. J) GO TO 150

IF (A(I,J) .NE. 0.00) GO TO 170

CONTINUE

M = K

IEXC = 2

GO TO 20

170 CONTINUE
.......... NOW BALANCE THE SUBMATRIX IN ROWS K TO L ..........

DO 180 1 = K, L

180 SCALE(1) = l.O0

.......... ITERATIVE LOOP FOR NORM REDUCTION ..........

]90 NOCONV = .FALSE.
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DO 270 I = K, L
C = 0.00
R = 0.00

DO 200 J = K, L

IF (J .EQ. I) GO TO 200

C = C + ABS(A(J,I))

R = R + ABS(A(I,J))

200 CONTINUE

C .......... GUARD AGAINST ZERO C OR R DUE TO UNDERFLOW ..........

IF (C .EQ. 0.00 .OR. R .EQ. 0.00) GO TO 270

G = R / RADIX

F = I.O0

S=C+R

210 IF (C .GE. G) GO TO 220

F -- F * RADIX

C=C*B2

GO TO 210

220 G = R * RADIX

230 IF (C .LT. G) GO TO 240

F = F / RADIX

C=C/B2

GO TO 230

C .......... NOW BALANCE ..........

240 IF ((C + R) / F .GE. 0.950 _ S) GO TO 270

G = l.O0 / F

SCALE(1) = SCALE(1) * F

NOCONV = .TRUE.

250

DO 250 J = K, N

A(I,J) = A(I,J) * G

260

DO 260 J = l, L

A(J,I) = A(J,I) * F

27O CONTINUE

IF (NOCONV) GO TO 190

28O LOW = K

IGH = L

RETURN

C ********** LAST CARD OF QXZI46 **********

END

C --- SUBPROGRAM QXZI47 --- FORMERLY KNOWN AS ROUTINE ELMHES ---

C

C

Forcesub QXZI47(NM,N,LOW, IGH,A, INT,temy) of NP ident ME

INTEGER N,NM, IGH,LOW, INT(1)

REAL A(N,N),temy(1)

Shared INTEGER LA,KPI,MMI,MPI,IAM

Shared Logical ilock

Shared REAL X,Y,XMUL,XMULI

16
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C

I00

C

II0

C

120

C

C130

130

c

Private Real tema(lO00)

End Declarations

i--

IAM=I

Barrier

LA = IGH - 1

KPI = LOW + l

IF (LA .LT. KPI) GO TO 200

End Barrier

DO 180 M = KPI, LA

Barrier

End Barrier

IF(ME.EQ. IAM) THEN

MMI = M - 1

X = 0.00

I = M

DO 100 J = M, IGH

IF (ABS(A(J,MMI)) .LE. ABS(X)) GO TO lO0

X = A (J,MMI)

I = J

CONTINUE

INT(M) = I

IF (I .EQ. M) GO TO 130

.......... INTERCHANGE ROWS AND COLUMNS OF A ..........

DO 110 J = MMI, N

Y = A(I,J)

A(I,J) = A(M,J)

A(M,J) = Y

CONTINUE

DO 120 J = 1, IGH

Y = A(J,I)

A(J,I) = A(J,M)

A(J,M) = Y

CONTINUE

.......... END INTERCHANGE ..........

IF (X .EQ. O.OO) GO TO 180
CONTINUE

ENDIF

Barrier

End Barrier

Barrier

iam=iam+l

if(iam.gt.NP) iam=1

End Barrier

IF(X.EQ.O.OO) GO TO IBOO

IF(ME.EQ. IAM) THEN

do 1301 i=m+1,igh

temy (i)=a (i,mml)/x

if (temy(i).ne.O.O0) a(i,mml)=temy(i)

if (a(i,mml).eq.O.O0) then

17
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c

c

c

c

C

1301
C

c

C

c

c

c

C

1399

c

CDIR$

l

2

3
1401

1400

CDIR$

14o3
1402

14001

CDIRS

1412

1411

temy(i)=O.O

else

temy (i)=a (i,mml)/x

a (i,mml) =temy (i)
endif

continue

DO 160 1 = MPI, IGH

Y = A(I,MMI)

IF (Y .EQ. 0.00)

Y=Y/X

A(I,MMI) = Y

GO TO 160

ENDIF

do 1399 j=l,igh

tema(j)=O.O

jend= ((igh-m)/8) *8

Barrier

IVDEP

IVDEP

iam=iam+]

if(tAM.GT.NP)
End Barrier
Barrier

End Barrier

IAM=I

do 1400 jj=m+l,m+jend,8

Presched DO 1400 jj=m+l,m+jend,8

do 1401 j=l,m-I

a (j,m) =a (j,m)+temy (jj) *a (j,jj)+temy (jj+l) *a (j,jj+l)

tema (j)=tema (3)+temy (J3) *a (3,JJ)+temy (jj+l) *a (j,j3+I)

+temy (jj+2) *a (j,jj+2)+temy (jj+3) *a (j,3j+3)

+temy(jj+4)*a(j,jj+4)+temy(jj+5)*a(j,jj+5)

+temy (jj+6) *a (j,33+6)+temy (jj+7) _a (j,33+7)

continue

End Presched DO

Barrier

End Barrier

Presched DO 1402 jj=jend+l+m, igh

do 1403 j=1,m-1

tema (j)=tema (j)+temy (jj)*a (j,jj)

End Presched DO

Barrier

End Barrier

Critical ilock

do 1400l j=l,m-l

a(J,M) = a(J,M) + tema(j)
End Critical

Barrier

End Barrier

Presched DO 1411 jj=m+l,n

IVDEP

do 1412 ii--m+l,igh

a (i i,jj) =a (i i,jj) -a (re,j j) *temy (i i)
End Presched DO

Barrier

18
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CDIR$ IVDEP

1608

CDIR$ IVDEP

16o9

c

1407

18OO

c

c 140

C

c

c 150

C

c 160

C

c801

c

c

c500

c501

180

End Barrier

IF(ME.EQ. IAM) THEN

do 1407 kk=m+l,igh

xmul=temy(kk)

xmull=xmul*a(m,kk)

write(*,*) a (kk,m)

a (kk,m) =a (kk,m) -temy (kk) *a (re,m)

a (kk,m) =a (kk,m) -xmul*a (re,m)

do 1608 ik=m,kk

a(ik,m)=a(ik,m)+xmul*a(ik,kk)

do 1609 ik=kk+l,igh

a (ik,m) =a (ik,m) +xmu I*a (ik, kk) +xmu Il*temy (ik)

write(*,*) a(kk,m),temy(kk),a(m,m)

continue

ENDIF

continue

DO 140 J = M, N

A(I,J) = A(I,J) - Y * A(M,J)

DO 150 J = I, IGH

A(J,M) = A(J,M) + Y * A(J,I)

CONTINUE

C

C

C**

write(*,*)' M-th step A(i,mml-n)

do 1500 II=I,N

write(*,1501) (a(ii,jj),jj=mml,n)

continue

format(Ix,lO(e9.3,1x))

Barrier

IAM=IAM+I

IF(IAM.GT.NP) IAM=I

End Barrier

CONTINUE

igh,jend =',M, igh,jend

200 RETURN

********** LAST CARD OF QXZ147 *******_**

THIS PROGRAM VALID ON FTN4 AND FTN5 **

END

SUBROUTINE BALANC(NM,N,A,LOW, IGH,SCALE)

INTEGER I,J,K,L,M,N,JJ,NM, IGH,LOW, IEXC

REAL A(N,N),SCALE(N)

REAL C,F,G,R,S,B2,RADIX

LOGICAL NOCONV

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE BALANCE,

NUM. MATH. 13, 293-304(1969) BY PARLETT AND REINSCH. _,

HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 315-326(1971).

THIS SUBROUTINE BALANCES A REAL MATRIX AND ISOLATES

EIGENVALUES WHENEVER POSSIBLE.
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C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

ON INPUT

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL

ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

DIMENSION STATEMENT.

N IS THE ORDER OF THE MATRIX.

A CONTAINS THE INPUT MATRIX TO BE BALANCED.

ON OUTPUT

A CONTAINS THE BALANCED MATRIX.

LOW AND IGH ARE TWO INTEGERS SUCH THAT A(I,J)

IS EQUAL TO ZERO IF

(1) I IS GREATER THAN J AND

(2) J=l ..... LOW-I OR I=IGH+I ..... N.

SCALE CONTAINS INFORMATION DETERMINING THE

PERMUTATIONS AND SCALING FACTORS USED.

SUPPOSE THAT THE PRINCIPAL SUBMATRIX IN ROWS LOW THROUGH IGH

HAS BEEN BALANCED, THAT P(J) DENOTES THE INDEX INTERCHANGED

WITH J DURING THE PERMUTATION STEP, AND THAT THE ELEMENTS

OF THE DIAGONAL MATRIX USED ARE DENOTED BY D(I,J). THEN

SCALE(J) = P(J), FOR J = l..... LOW-1

= D(J,J), J = LOW ..... IGH

= P(J) J = IGH+I ..... N.

THE ORDER IN WHICH THE INTERCHANGES ARE MADE IS N TO IGH+I,

THEN l TO LOW-1.

NOTE THAT 1 IS RETURNED FOR IGH IF IGH IS ZERO FORMALLY.

THE ALGOL PROCEDURE EXC CONTAINED IN BALANCE APPEARS IN

BALANC IN LINE. (NOTE THAT THE ALGOL ROLES OF IDENTIFIERS

K,L HAVE BEEN REVERSED.)

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,

MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED AUGUST 1983.

RADIX = 16.0EO

B2 = RADIX * RADIX

K = 1

L =N

GO TO lO0

.......... IN-LINE PROCEDURE FOR ROW AND
COLUMN EXCHANGE ..........

20 SCALE (M) = J

IF (J .EQ. M) GO TO 5O

2O
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DO 30 1 = l, L

F = A (I,J)

A(I,J) = A(I,M)

A (I,M) = F

30 CONTINUE

DO 4O I = K, N

F = A(J, I)

A(J,I) = A(M,I)

A(M,I) = F

40 CONTINUE

C

50 GO TO (80,130), IEXC

C .......... SEARCH FOR ROWS ISOLATING AN EIGENVALUE

C AND PUSH THEM DOWN ..........

80 IF (L .EQ. 1) GO TO 280

L = L - I

C .......... FOR J=L STEP -I UNTIL I DO -- ..........

]DO DO 120 JJ = l, L

J = L + I - JJ

C

C

C

C

C

110

DO llO I = I, L

IF (I .EQ. J) GO TO llO

IF (A(J,I) .NE. O.OEO) GO TO ]20

CONTINUE

M = L

IEXC = 1

GO TO 20

120 CONTINUE

GO TO 140

.......... SEARCH FOR COLUMNS ISOLATING AN EIGENVALUE

AND PUSH THEM LEFT ..........

130 K = K + 1

140 DO 170 J = K, L

15o

DO 150 1 = K, L

IF (I .EQ. J) GO TO 150

IF (A(I,J) .NE. O.OEO) GO TO 170
CONTINUE

M = K

IEXC = 2

GO TO 20

170 CONTINUE

.......... NOW BALANCE THE SUBMATRIX IN ROWS K TO L ..........

DO 180 I = K, L

180 SCALE(1) = I.OEO

.......... ITERATIVE LOOP FOR NORM REDUCTION ..........

190 NOCONV = .FALSE.

DO 270 I = K, L
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C = O.OEO

R = O.OEO

DO 200 J = K, L

IF (J .EQ. I) GO TO 200

C = C + ABS(A(J,I))

R = R + ABS(A(I,J))

200 CONTINUE

C .......... GUARD AGAINST ZERO C OR R DUE TO UNDERFLOW ..........

IF (C .EQ. O.OEO .OR. R .EQ. O.OEO) GO TO 270

G = R / RADIX

F =.I.0EO

S = C + R

210 IF (C .GE. G) GO TO 220

F = F * RADIX

C = C * B2

GO TO 210

220 G = R * RADIX

230 IF (C .LT. G) GO TO 240

F = F / RADIX

C = C / B2

GO TO 230

C .......... NOW BALANCE ..........

240 IF ((C + R) / F .GE. 0.95E0 * S) GO TO 270

G = ].OEO / F

SCALE(1) = SCALE(1) * F

NOCONV = .TRUE.

C

C

C

C

250

DO 250 J = K, N

A(I,J) = A(I,J) * G

260
DO 260 J = 1, L

A(J,I) = A(J,I) * F

270 CONTINUE

IF (NOCONV) GO TO 190

280 LOW = K

IGH = L

RETURN

END

SUBROUTINE HQR(NM,N,LOW, IGH,H,WR,WI,IERR)

INTEGER I,J,K,L,M,N,EN,LL,MM,NA,NM, IGH,ITN, ITS,LOW,MP2,ENM2,1ERR

REAL H(N,N),WR(N),WI(N)

REAL P,Q,R,S,T,W,X,Y,ZZ,NORM,TSTI,TST2
LOGICAL NOTLAS

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE HQR,

NUM. MATH. 14, 219-231(1970) BY MARTIN, PETERS, AND WILKINSON.

HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 359-371(1971).

THIS SUBROUTINE FINDS THE EIGENVALUES OF A REAL

UPPER HESSENBERG MATRIX BY THE QR METHOD,
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ON INPUT

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL

ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

DIMENSION STATEMENT.

N IS THE ORDER OF THE MATRIX.

LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING

SUBROUTINE BALANC. IF BALANC HAS NOT BEEN USED,

SET LOW=I, IGH=N.

H CONTAINS THE UPPER HESSENBERG MATRIX. INFORMATION ABOUT

THE TRANSFORMATIONS USED IN THE REDUCTION TO HESSENBERG

FORM BY ELMHES OR ORTHES, IF PERFORMED, IS STORED

IN THE REMAINING TRIANGLE UNDER THE HESSENBERG MATRIX.

ON OUTPUT

H HAS BEEN DESTROYED. THEREFORE, IT MUST BE SAVED

BEFORE CALLING HQR IF SUBSEQUENT CALCULATION AND

BACK TRANSFORMATION OF EIGENVECTORS IS TO BE PERFORMED.

WR AND WI CONTAIN THE REAL AND IMAGINARY PARTS,

RESPECTIVELY, OF THE EIGENVALUES. THE EIGENVALUES

ARE UNORDERED EXCEPT THAT COMPLEX CONJUGATE PAIRS

OF VALUES APPEAR CONSECUTIVELY WITH THE EIGENVALUE

HAVING THE POSITIVE IMAGINARY PART FIRST. IF AN

ERROR EXIT IS MADE, THE EIGENVALUES SHOULD BE CORRECT

FOR INDICES IERR+I, .... N.

IERR IS SET TO

ZERO FOR NORMAL RETURN,

J IF THE LIMIT OF 30*N ITERATIONS IS EXHAUSTED

WHILE THE J-TH EIGENVALUE IS BEING SOUGHT.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED AUGUST 1983.

4O

IERR = 0

NORM = O.OEO

K = 1

.......... STORE ROOTS ISOLATED BY BALANC

AND COMPUTE MATRIX NORM ..........

DO 50 1 = I, N

DO 40 J = K, N

NORM = NORM + ABS (H(I,J) )

K= I
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IF (I .GE. LOW .AND. I .LE. IGH) GO TO 50

WR(1) = H(I,I)

wi(1) = O.OEO
50 CONTINUE

EN = I GH
T = O.OEO

I TN = 30teN
C .......... SEARCH FOR NEXT E IGENVALUES ..........

60 IF (EN .LT. LOW) GO TO lO0]
ITS = 0

NA = EN - l

ENM2 = NA - l

C .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT

C FOR L=EN STEP -1 UNTIL LOW DO -- ..........

70 DO 80 LL = LOW, EN

L = EN + LOW - LL

IF (L .EQ. LOW) GO TO lO0

S = ABS(H(L-I,L-I)) + ABS(H(L,L))

IF (S .EQ. O.OEO) S = NORM

TSTI = S

TST2 = TST] + ABS(H(L,L-I))

IF (TST2 .EQ. TSTI) GO TO I00
80 CONTINUE

C .......... FORM SH IFT ..........

100 X = H(EN,EN)

IF (L .EQ. EN) GO TO 270
Y = H(NA,NA)

W = H(EN,NA) * H(NA,EN)

IF (L .EQ. NA) GO TO 280

IF (ITN .EQ. O) GO TO lO00
IF (ITS .NE. 10 .AND. ITS .NE. 20) GO TO 130

.......... FORM EXCEPTIONAL SHIFT ..........

T=T+X

DO 120 I = LOW, EN

120 H(I,I) = H(I,I) X

S = ABS(H(EN,NA)) + ABS(H(NA,ENM2))

X = 0.75E0 _ S

Y = X

W = -0.4375E0 * S * S

130 ITS = ITS + l
ITN = ITN - ]

.......... LOOK FOR TWO CONSECUTIVE SMALL

SUB-DIAGONAL ELEMENTS.

FOR M=EN-2 STEP -] UNTIL L DO -- . .........

DO 140 MM = L, ENM2

M = ENM2 + L - MM

zz = H(M,M)
R = X - ZZ

S = Y - ZZ

P = (R * S - W) / H(M+I,M) + H(M,M+I)

Q = H(M+I,M+I) - ZZ - R - S

R = H(M+2,M+I)
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S = ABS(P) + ABS(Q) + ABS(R)

P=P/S

Q=Q/S
R=R/S

IF (M .EQ. L) GO TO 150
TSTI = ABS(P)*(ABS(H(M-I,M-I)) + ABS(ZZ) + ABS(H(M+I,M+I)))

TST2 : TSTI + ABS(H(M,M-I))m(ABS(Q) + ABS(R))

IF (TST2 .EQ. TSTI) GO TO 150

140 CONTINUE

150 MP2 = M + 2

DO 160 1 --MP2, EN

H(I,I-2) = O.OEO

IF (I .EQ. MP2) GO TO 160

H(I,I-3) = O.OEO

160 CONTINUE
C .......... DOUBLE QR STEP INVOLVING ROWS L TO EN AND

C COLUMNS M TO EN ..........

DO 260 K = M, NA

NOTLAS -- K .NE. NA

IF (K .EQ. M) GO TO 170

P = H (K,K-I)

Q = H (K+I,K-I)

R = O.OEO

IF (NOTLAS) R = H(K+2,K-])

X - ABS(P) + ABS(Q) + ABS(R)

IF (X .EQ. O.OEO) GO TO 260

P=P/X

Q=Q/X

R=R /X

170 S = S IGN (SQRT (P*P+Q*Q+R*R), P)

IF (K .EQ. M) GO TO 180

H(K,K-]) = -S * X

GO TO 190

180 IF (L .NE. M) H(K,K-I) =-H(K,K-I)

190 P=P+S
X-P/S

Y=Q/S

ZZ=R/S

Q=Q/P

R=R/P

IF (NOTLAS) GO TO 225

C .......... ROW MODI F ICATION ..........

DO 200 J = K, N

P = H(K,J) + q * H(K+I,J)

H(K,J) = H(K,J) - P * X

H(K+I,J) = H(K+I,J) - P * Y

200 CONT INUE

J = MINO (EN,K+3)
.......... COLUMN MODIFICATION ..........

DO 210 I = l, J
P = X * H(I,K) + Y * H(I,K+I)

H(I,K) = H(I,K) - P
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210

225
C

230
C

H(I,K+I) = H(I,K+I) P * Q
CONT I NUE

GO TO 2.55
CONT I NUE

.......... ROW MODIFICATION ..........

DO 230 J = K, N

P = H(K,J) + Q * H(K+I,J) + R * H(K+2,J)

H(K,J) = H(K,J) - P * X

H(K+I,J) = H(K+I,J) - P * Y

H(K+2,J) = H(K+2,J) - P * ZZ

CONT INUE

J = MINO(EN,K+3)

.......... COLUMN MODIFICATION ..........

DO 240 1 - l, J

P = X * H(I,K) + Y * H(I,K+I) + ZZ * H(I,K+2)

H(I,K) = H(I,K) - P

H(!,K+I) = H(I,K+I) P * Q

H(I,K+2) = H(I,K+2) - P * R

CONT INUE

CONTINUE

240

255
C

260 CONTINUE

C

GO TO 7O
C .......... ONE ROOT FOUND ..........

270 WR(EN) = X + T

WI (EN) = O.OEO

EN = NA

GO TO 60

C .......... TWO ROOTS FOUND ..........

280 P = (Y - X) / 2.0EO

Q=P*P+W

ZZ = SQRT(ABS(Q))

X=X+T

IF (Q .LT. O.OEO) GO TO 320
C .......... REAL PAIR ..........

ZZ = P + SIGN(ZZ,P)
WR(NA) = X + ZZ

WR (EN) = WR(NA)

IF (ZZ .NE. O.OEO) WR(EN) = X - W / ZZ

WI(NA) = O.OEO

WI (EN) = O.OEO

GO TO 330
C .......... COMPLEX PAIR ..........

320 WR(NA) - X + P

WR(EN) = X + P

WI(NA) = ZZ
WI(EN) = -ZZ

330 EN = ENM2
GO TO 60

C .......... SET ERROR -- ALL EIGENVALUES HAVE NOT

C CONVERGED AFTER 30*N ITERATIONS ..........

lO00 IERR = EN

fOOl RETURN
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END

Forcesub OELMHS(NM,N,LOW, IGH,A,RINDEX) of NP ident ME

REAL

+ A(N,N), RINDEX(IGH)

INTEGER

+ IGH, LOW, N, NM

REAL

+ X, Y

Shared INTEGER KPI,LA,MMI,MPI

End Declarations

THIS SUBROUTINE IS A TRANSLATION OF THE ALGOL PROCEDURE ELMHES,

NUM. MATH. 12, 349-368(1968) BY MARTIN AND WILKINSON.

HANDBOOK FOR AUTO. COMP., VOL.II-LINEAR ALGEBRA, 339-358(1971).

GIVEN A REAL GENERAL MATRIX, THIS SUBROUTINE

REDUCES A SUBMATRIX SITUATED IN ROWS AND COLUMNS

LOW THROUGH IGH TO UPPER HESSENBERG FORM BY

STABILIZED ELEMENTARY SIMILARITY TRANSFORMATIONS.

ON INPUT

NM MUST BE SET TO THE ROW DIMENSION OF TWO-DIMENSIONAL

ARRAY PARAMETERS AS DECLARED IN THE CALLING PROGRAM

DIMENSION STATEMENT.

N IS THE ORDER OF THE MATRIX.

LOW AND IGH ARE INTEGERS DETERMINED BY THE BALANCING

SUBROUTINE BALANC. IF BALANC HAS NOT BEEN USED,

SET LOW=I, IGH=N.

A CONTAINS THE INPUT MATRIX.

ON OUTPUT

A CONTAINS THE HESSENBERG MATRIX. THE MULTIPLIERS

WHICH WERE USED IN THE REDUCTION ARE STORED IN THE

REMAINING TRIANGLE UNDER THE HESSENBERG MATRIX.

RINDEX CONTAINS INFORMATION ON THE ROWS AND COLUMNS

INTERCHANGED IN THE REDUCTION.

ONLY ELEMENTS LOW THROUGH IGH ARE USED.

QUESTIONS AND COMMENTS SHOULD BE DIRECTED TO BURTON S. GARBOW,
MATHEMATICS AND COMPUTER SCIENCE DIV, ARGONNE NATIONAL LABORATORY

THIS VERSION DATED AUGUST 1983.

LA = IGH l

KPI = LOW + l

IF (LA .LT. KPI) RETURN
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Barrier

DO 180 M = KPI, LA

MMI = M - l

X = O.ODO

I = M

100

DO lO0 J = M, IGH

IF (ABS(A(J,MMI)) .LE. ABS(X)) GO TO I00

X = A(J,MM1)
1 = J

CONTINUE

110

RINDEX(M) = REAL(I)

IF (I .EQ. M) GO TO 130

.......... INTERCHANGE ROWS AND COLUMNS OF A ..........

DO II0 J = MMI, N

Y = A(I,J)

A(I,J) = A(M,J)

A(M,J) = Y

CONTINUE

120

130

DO 120 J = t, IGH
Y = A(J,I)

A(J,I) = A(J,M)

A (J,M) = Y

CONT INUE

.......... END INTERCHANGE ..........

IF (X .EQ. O.ODO) GO TO 180

MPI =M+ 1

DO 160 1 = MPI, IGH

Y = A(I,MMI)

IF (Y .EQ. O.ODO) GO TO 160

Y=Y/X

A(I,MMI) = Y

140

150

DO 140 J = M, N

A(I,J) = A(I,J) - Y * A(M,J)

DO 150 J = l, IGH

A(J,M) = A(J,M) + Y * A(J,I)

160 CONTINUE

180 CONTINUE

End Barrier

RETURN

END

SUBROUTINE QXZI521(NM,N,LOW, iGH,H,WR,WI,IERR)

INTEGER I,J,K,L,M,N,EN,LL,MM,NA,NM, IGH, ITN,ITS,LOW,MP2,ENM2,1ERR

REAL H(N,N),WR(N),WI(N)

REAL P,Q,R,S,T,W,X,Y,ZZ,NORM,TSTI,TST2
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LOGICAL NOTLAS

IERR = 0

NORM -- 0.00

K= ]

.......... STORE ROOTS ISOLATED BY QXZ]46

AND COMPUTE MATRIX NORM ..........

DO 50 1 = l, N

4O

DO 40 J : K, N

NORM = NORM + ABS(H(I,J))

K= I

IF (I .GE. LOW .AND. I .LE. IGH) GO TO 50

WR(1) = H(I,I)

wl (1) = o.oo
50 CONTINUE

EN = IGH

T = 0.00

ITN = 30*N
C .......... SEARCH FOR NEXT EIGENVALUES ..........

60 IF (EN .LT. LOW) GO TO ]001

ITS = 0

NA = EN - l

ENM2 : NA - I
C .......... LOOK FOR SINGLE SMALL SUB-DIAGONAL ELEMENT

C FOR L:EN STEP -I UNTIL LOW DO -- ..........

70 DO 80 LL = LOW, EN

L = EN + LOW - LL

IF (L .EQ. LOW) GO TO lO0

S = ABS(H(L-I,L-I)) + ABS(H(L,L))

IF (S .EQ. 0.00) S = NORM

TSTI = S

TST2 = TSTI + ABS(H(L,L-I))

IF (TST2 .EQ. TSTI) GO TO lO0

80 CONTINUE

C .......... FORM SH IFT ..........

lO0 X = H(EN,EN)

IF (L .EQ. EN) GO TO 270

Y = H(NA,NA)

W = H(EN,NA) * H(NA,EN)

IF (L .EQ. NA) GO TO 280

IF (ITN .EQ. O) GO TO lO00

IF (ITS .NE. lO .AND. ITS .NE. 20) GO TO 130

C .......... FORM EXCEPTIONAL SHIFT ..........

write(*,*)'** EN, T X =',EN,T,X

T=T+X

DO 120 1 = LOW, EN

120 H(I,I) = H(I,I) - X

S = ABS(H(EN,NA)) + ABS(H(NA,ENM2))

x = 0.750 * s
Y=X
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W = -0.43750 * S * S

130 ITS : ITS + 1

ITN : ITN - l

.......... LOOK FOR TWO CONSECUTIVE SMALL

SUB-DIAGONAL ELEMENTS.

FOR M:EN-2 STEP -l UNTIL L DO -- ..........

DO 140 MM = L, ENM2

M : ENM2 + L - MM

ZZ : H (M,M)

R=X-ZZ

S =y- ZZ

P = (R * S - W) / H(M+I,M) + H(M,M+I)

Q = H(M+I,M+I) - ZZ - R - S

R : H (M+2,M+I)

S -- ABS(P) + ABS(Q) + ABS(R)

P=P/S

Q=Q/S

R=R/S

IF (M .EQ. L) GO TO 150

TSTI = ABS(P) m(ABS(H(M-I,M-I)) + ABS(ZZ) + ABS(H(M+I,M+I)))

TST2 : TSTI + ABS(H(M,M-I))m(ABS(Q) + ABS(R))

IF (TST2 .EQ. TSTI) GO TO 150

140 CONTINUE

150 MP2 = M + 2

DO 160 1 = MP2, EN

H(I,I-2) = 0.00

IF (I .EQ. MP2) GO TO 160

H(1,I-3) = 0.00
160 CONTINUE

.......... DOUBLE QR STEP INVOLVING ROWS L TO EN AND

COLUMNS M TO EN ..........

DO 260 K -- M, NA

NOTLAS = K .NE. NA

IF (K .EQ. M) GO TO 170

P = H(K,K-I)

Q = H (K+I,K-I)

R = 0.00

IF (NOTLAS) R = H(K+2,K-I)

X = ABS(P) + ABS(Q) + ABS(R)

IF (X .EQ. 0.00) GO TO 260

P=P/X

Q=Q/X

R=R/X

170 S = S IGN (SQRT (P*P+Q*Q+R*R), P)

IF (K .EQ. M) GO TO 180

H(K,K-I) = -S * X

GO TO 190

180 IF (L .NE. M) H(K,K-I) =-H(K,K-I)

190 P= P+ S

X=P/S

Y=Q/S

ZZ=R/S

Q=Q/P
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200

R=R/P

IF (NOTLAS) GO TO 225

.......... ROW MODIFICATION ..........

DO 200 J = K, N

P = H(K,J) + Q* H(K+I,J)
H(K,J) = H(K,J) - P * X

H(K+I,J) = H(K+I,J) - P * Y

CONT INUE

J = MINO(EN,K+3)

.......... COLUMN MODIFICATION ..........

DO 210 I = l, J

P = X * H(I,K) + Y * H(I,K+I)

H(I,K) = H(I,K) - P
H(I,K+I) = H(I,K+I) - P * Q

210 CONTINUE

GO TO 255

225 CONTINUE
.......... ROW MODIFICATION ..........

DO 230 J = K, N

P = H(K,J) + Q * H(K+I,J) + R * H(K+2,J)

H(K,J) = H(K,J) - P * X

H(K+I,J) = H(K+I,J) - P * Y

H(K+2,J) = H(K+2,J) - P * Z7

230 CONTINUE

240

255

J = M INO (EN,K+3)

.......... COLUMN MODIFICATION ..........

DO 240 I = l, J

P = X * H(I,K) + Y * H(I,K+I) + ZZ * H(I,K+2)

H(I,K) = H(I,K) - P

H(I,K+I) = H(l,K+l) - P * Q

H(I,K+2) = H(I,K+2) - P * R

CONT INUE

CONT INUE

write(*,*)'NOTLAS,K,H(K,K)=',NOTLAS,K,H(K,K)

260 CONTINUE

GO TO 7O

.......... ONE ROOT FOUND ..........

270 WR (EN) = X + T

WI (EN) = 0.00

EN = NA

GO TO 6O

.......... TWO ROOTS FOUND ..........

280 P = (Y - X) / 2.00

Q= P* P+W
ZZ = SQRT (ASS (Q))

X=X+T

***** the following if is added by Qin

IF(Q.LT.O.O0) go to 320
.......... REAL PAl R ..........

ZZ = P + SIGN(ZZ,P)

WR(NA) = X + ZZ
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C

320

33o

C

C

1000
1001

WR (EN) = WR (NA)

IF (ZZ .NE. 0.00) WR(EN) = X - W / ZZ

WI(NA) = 0.00

WI (EN) = 0.00

GO TO 330
.......... COMPLEX PAIR ..........

WR(NA) = X + P

WR(EN) = X + P

WI (NA) = ZZ

WI(EN) = -ZZ

EN = ENM2

GO TO 60

.......... SET ERROR -- ALL EIGENVALUES HAVE NOT

CONVERGED AFTER 30*N ITERATIONS ..........

IERR = EN

RETURN

END

subroutine ascend(n,er,ei,wk)

c implicit real*8(a-h,o-z)

real er (1) ,ei (1) ,wk (n, I)

Cl w J i i •

do 1 i=l,n

small=999999999.

do 2 j=l,n
if( er(j).lt.sma11 )

sma11=er(j)

locate=j
wk(i,l)=er(j)

wk (i ,2)=ei (j)
endif

2 continue

er(locate)=999999999.
1 continue

CwlJv_w

do 21 i=1,n

er (i)=wk (i, I)

21 ei (i)=wk (i,2)

CagJiiJ

then

write(6,*) 'real & imaginary evalues

do II i=n-lO,n

write(6,*) i,er(i),ei (i)

continue

return

end

II

in ascending order'
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