47 research outputs found

    Effects of electron transfer in model catalyst composed of Pt nanoparticles on CeO2(111) surface

    Get PDF
    Interactions between transition metal nanoparticles and reducible oxide supports are thought to significantly affect the performance of many catalysts. Usually, several metal-support effects act together and cannot be separated from each other. Herein, by means of density-functional calculations we succeeded to single out and quantify effects of the metal-support electron transfer on the structure and electronic properties of important model Pt-ceria catalysts. Namely, we considered ∼1.5 nm large Pt95 and Pt122 particles supported on CeO2(1 1 1). We show that Pt-ceria interactions notably reconstruct Pt nanofacets forming the interface and shift valence d-states of the Pt particles. These effects are rather insensitive to the Pt-ceria electron transfer, at variance with the electronic structure of oxygen anions at the interface, which is significantly affected by the electron transfer. The findings of this work and the special modeling approach applied pave the way for deeper analysis of electronic metal-support interactions in catalysis

    Quantifying interactions on interfaces between metal partic¬les and oxide supports in catalytic nanomaterials

    Full text link
    Metal-support interactions can dramatically affect the properties of nanocomposite materials. Nevertheless, comprehensive studies of the interfaces between metal nanoparticles and oxide supports remain scarce due to challenges in experimental characterization. A significant understanding of the interactions at such interfaces can be obtained by combining state-of-the-art experiments with density functional calculations. In particular, this Perspective illustrates how theory and experiment can be combined to study interfacial charge transfer, the short- or long-range natures of nanoparticle-support interactions and the effects of oxide nanostructuring on the properties of supported metal particles. These studies aid our understanding of the role of metal-oxide interactions in industrially employed nanocomposites and the design of interfaces with unique properties for future applications

    Energetic stability of absorbed H in Pd and Pt nanoparticles in a more realistic environment

    Full text link
    Absorbed hydrogen can dramatically increase hydrogenation activity of Pd nanoparticles and was predicted to do so also for Pt. This calls for investigations of the energetic stability of absorbed H in Pd and Pt using nanoparticle models as realistic as possible, i.e., (i) sufficiently large, (ii) supported, and (iii) precovered by hydrogen. Herein, hydrogen absorption is studied in MgO(100)-supported 1.6 nm large Pd and Pt nanoparticles with surfaces saturated by hydrogen. The effect of surface H on the stability of absorbed H is found to be significant and to exceed the effect of the support. H absorption is calculated to be endothermic in Pt, energy neutral in Pd(111) and bare Pd nanoparticles, and exothermic in H-covered Pd nanoparticles. Hence, we identify the abundance of surface H and the nanostructuring of Pd as prerequisites for facile absorption of hydrogen in Pd and for the concomitantly altered catalytic activity

    Reduced ceria nanofilms from structure prediction

    Get PDF
    Experimentally, Ce2O3 films are used to study cerium oxide in its fully or partially reduced state, as present in many applications. We have explored the space of low energy Ce2O3 nanofilms using structure prediction and density functional calculations, yielding more than 30 distinct nanofilm structures. First, our results help to rationalize the roles of thermodynamics and kinetics in the preparation of reduced ceria nanofilms with different bulk crystalline structures (e.g. A-type or bixbyite) depending on the support used. Second, we predict a novel, as yet experimentally unresolved, nanofilm which has a structure that does not correspond to any previously reported bulk A2B3 phase and which has an energetic stability between that of A-type and bixbyite. To assist identification and fabrication of this new Ce2O3 nanofilm we calculate some observable properties and propose supports for its epitaxial growth

    MGluR5 Mediates the Interaction between Late-LTP, Network Activity, and Learning

    Get PDF
    Hippocampal synaptic plasticity and learning are strongly regulated by metabotropic glutamate receptors (mGluRs) and particularly by mGluR5. Here, we investigated the mechanisms underlying mGluR5-modulation of these phenomena. Prolonged pharmacological blockade of mGluR5 with MPEP produced a profound impairment of spatial memory. Effects were associated with 1) a reduction of mGluR1a-expression in the dentate gyrus; 2) impaired dentate gyrus LTP; 3) enhanced CA1-LTP and 4) suppressed theta (5–10 Hz) and gamma (30–100 Hz) oscillations in the dentate gyrus. Allosteric potentiation of mGluR1 after mGluR5 blockade significantly ameliorated dentate gyrus LTP, as well as suppression of gamma oscillatory activity. CA3-lesioning prevented MPEP effects on CA1-LTP, suggesting that plasticity levels in CA1 are driven by mGluR5-dependent synaptic and network activity in the dentate gyrus. These data support the hypothesis that prolonged mGluR5-inactivation causes altered hippocampal LTP levels and network activity, which is mediated in part by impaired mGluR1-expression in the dentate gyrus. The consequence is impairment of long-term learning

    Surface composition changes of CuNi-ZrO2 during methane decomposition: An operando NAP-XPS and density functional study

    Get PDF
    AbstractBimetallic CuNi nanoparticles of various nominal compositions (1:3, 1:1, 3:1) supported on ZrO2 were employed for operando spectroscopy and theoretical studies of stable surface compositions under reaction conditions of catalytic methane decomposition up to 500°C. The addition of Cu was intended to increase the coke resistance of the catalyst. After synthesis and (in situ) reduction the CuNi nanoparticles were characterized by HR-TEM/EDX, XRD, FTIR (using CO as probe molecule) and NAP-XPS, all indicating a Cu rich surface, even when the overall nanoparticle composition was rich in Ni. Density functional (DF) theory modelling, applying a recently developed computational protocol based on the construction of topological energy expressions, confirmed that in any studied composition Cu segregation on surface positions is an energetically favourable process, with Cu preferentially occupying corner and edge sites. Ni is present on terraces only when not enough Cu atoms are available to occupy all surface sites.When the catalysts were applied for methane decomposition they were inactive at low temperature but became active above 425°C. Synchrotron-based operando NAP-XPS indicated segregation of Ni on the nanoparticle surface when reactivity set in for CuNi-ZrO2. Under these conditions C 1s core level spectra revealed the presence of various carbonaceous species at the surface. DF calculations indicated that both the increase in temperature and especially the adsorption of CHx groups (x=0-3) induce the segregation of Ni atoms on the surface, with CH3 providing the lowest and C the highest driving force.Combined operando and theoretical studies clearly indicate that, independent of the initial surface composition after synthesis and reduction, the CuNi-ZrO2 catalyst adopts a specific Ni rich surface under reaction conditions. Based on these findings we provide an explanation why Cu rich bimetallic systems show improved coke resistance

    Versatile optimization of chemical ordering in bimetallic nanoparticles

    Get PDF
    Chemical ordering in bimetallic nanocrystallites can now be efficiently determined by density-functional calculations with the help of topological energy expressions. Herein, we deal with extending the usage of that computational scheme. We show that it enables one to structurally characterize bimetallic nanoparticles of less regular shapes than previously studied magic-type particles. In fcc Pd-Au particles of different shapes (cuboctahedral Pd58Au58, C3v Pd61Au61, cubic Pd68Au67, and truncated octahedral Pd70Au70), we identify the surface segregation of gold as the driving force to the lowest-energy chemical ordering. We applied the calculated descriptor values quantifying the segregation propensity of Au and energies of Pd-Au bonds in these ∼1.5 nm large particles to optimize and analyze the chemical ordering in 3.7-6 nm large Pd-Au particles. We also discuss how to predict the chemical ordering in nanoalloys at elevated temperatures. The present study paves the way to advanced structural investigations of nanoalloys to substantially accelerate their knowledge-driven engineering and manufacturing

    Pt/CeO2 and Pt/CeSnOx catalysts for low-temperature CO oxidation prepared by plasma-arc technique

    Full text link
    We applied a method of plasma arc synthesis to study effects of modification of the fluorite phase of ceria by tin ions. By sputtering active components (Pt, Ce, Sn) together with carbon from a graphite electrode in a helium ambient we prepared samples of complex highly defective composite PtCeC and PtCeSnC oxide particles stabilized in a matrix of carbon. Subsequent high-temperature annealing of the samples in oxygen removes the carbon matrix and causes the formation of active catalysts Pt/CeOx and Pt/CeSnOx for CO oxidation. In the presence of Sn, X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM) show formation of a mixed phase CeSnOx and stabilization of more dispersed species with a fluorite-type structure. These factors are essential for the observed high activity and thermic stability of the catalyst modified by Sn. X-Ray Photoelectron Spectroscopy (XPS) reveals the presence of both Pt2+ and Pt4+ ions in the catalyst Pt/CeOx, whereas only the state Pt2+ of platinum could be detected in the Sn-modified catalyst Pt/CeSnOx. Insertion of Sn ions into the Pt/CeOx lattice destabilizes/reduces Pt4+ cations in the Pt/CeSnOx catalyst and induces formation of strikingly high concentration (up to 50% at.) of lattice Ce3+ ions. Our DFT calculations corroborate destabilization of Pt4+ ions by incorporation of cationic Sn in Pt/CeOx. The presented results show that modification of the fluorite lattice of ceria by tin induces substantial amount of mobile reactive oxygen partly due to affecting geometric parameters of ceria by tin ions

    MAGIQ at the W. M. Keck Observatory: initial deployment of a new acquisition, guiding, and image quality monitoring system

    Get PDF
    The W. M. Keck Observatory has completed the development and initial deployment of MAGIQ, the Multi-function Acquisition, Guiding and Image Quality monitoring system. MAGIQ is an integrated system for acquisition, guiding and image quality measurement for the Keck telescopes. This system replaces the acquisition and guiding hardware and software for existing instruments at the Observatory and is now the standard for visible wavelength band acquisition cameras for future instrumentation. In this paper we report on the final design and implementation of this new system, which includes three major components: a visible wavelength band acquisition camera, image quality measurement capability, and software for acquisition, guiding and image quality monitoring. The overall performance is described, as well as the details of our approach to integrating low order wavefront sensing capability in order to provide closed loop control of telescope focus

    Pt/CeO2 and Pt/CeSnOx Catalysts for Low-Temperature CO Oxidation Prepared by Plasma-Arc Technique

    Get PDF
    We applied a method of plasma arc synthesis to study effects of modification of the fluorite phase of ceria by tin ions. By sputtering active components (Pt, Ce, Sn) together with carbon from a graphite electrode in a helium ambient we prepared samples of complex highly defective composite PtCeC and PtCeSnC oxide particles stabilized in a matrix of carbon. Subsequent high-temperature annealing of the samples in oxygen removes the carbon matrix and causes the formation of active catalysts Pt/CeOx and Pt/CeSnOx for CO oxidation. In the presence of Sn, X-Ray Diffraction (XRD) and High-Resolution Transmission Electron Microscopy (HRTEM) show formation of a mixed phase CeSnOx and stabilization of more dispersed species with a fluorite-type structure. These factors are essential for the observed high activity and thermic stability of the catalyst modified by Sn. X-Ray Photoelectron Spectroscopy (XPS) reveals the presence of both Pt2+ and Pt4+ ions in the catalyst Pt/CeOx, whereas only the state Pt2+ of platinum could be detected in the Sn-modified catalyst Pt/CeSnOx. Insertion of Sn ions into the Pt/CeOx lattice destabilizes/reduces Pt4+ cations in the Pt/CeSnOx catalyst and induces formation of strikingly high concentration (up to 50% at.) of lattice Ce3+ ions. Our DFT calculations corroborate destabilization of Pt4+ ions by incorporation of cationic Sn in Pt/CeOx. The presented results show that modification of the fluorite lattice of ceria by tin induces substantial amount of mobile reactive oxygen partly due to affecting geometric parameters of ceria by tin ions
    corecore