10,884 research outputs found

    Surveying the solar system by measuring angles and times: from the solar density to the gravitational constant

    Full text link
    A surprisingly large amount of information on our solar system can be gained from simple measurements of the apparent angular diameters of the sun and the moon. This information includes the average density of the sun, the distance between earth and moon, the radius of the moon, and the gravitational constant. In this note it is described how these and other quantities can be obtained by simple earthbound measurements of angles and times only, without using any explicit information on distances between celestial bodies. The pedagogical and historical aspects of these results are also discussed briefly.Comment: 12 pges, one figur

    Orbiting passive microwave sensor simulation applied to soil moisture estimation

    Get PDF
    A sensor/scene simulation program was developed and used to determine the effects of scene heterogeneity, resolution, frequency, look angle, and surface and temperature relations on the performance of a spaceborne passive microwave system designed to estimate soil water information. The ground scene is based on classified LANDSAT images which provide realistic ground classes, as well as geometries. It was determined that the average sensitivity of antenna temperature to soil moisture improves as the antenna footprint size increased. Also, the precision (or variability) of the sensitivity changes as a function of resolution

    Generalized Mean Field Approach to a Resonant Bose-Fermi Mixture

    Full text link
    We formulate a generalized mean-field theory of a mixture of fermionic and bosonic atoms, in which the fermion-boson interaction can be controlled by a Feshbach resonance. The theory correctly accounts for molecular binding energies of the molecules in the two-body limit, in contrast to the most straightforward mean-field theory. Using this theory, we discuss the equilibrium properties of fermionic molecules created from atom pairs in the gas. We also address the formation of molecules when the magnetic field is ramped across the resonance, and present a simple Landau-Zener result for this process.Comment: 35 page

    Microwave soil moisture measurements and analysis

    Get PDF
    An effort to develop a model that simulates the distribution of water content and of temperature in bare soil is documented. The field experimental set up designed to acquire the data to test this model is described. The microwave signature acquisition system (MSAS) field measurements acquired in Colby, Kansas during the summer of 1978 are pesented

    Determining a quantum state by means of a single apparatus

    Get PDF
    The unknown state \hrho of a quantum system S is determined by letting it interact with an auxiliary system A, the initial state of which is known. A one-to-one mapping can thus be realized between the density matrix \hrho and the probabilities of occurrence of the eigenvalues of a single and factorized observable of S+A, so that \hrho can be determined by repeated measurements using a single apparatus. If S and A are spins, it suffices to measure simultaneously their zz-components after a controlled interaction. The most robust setups are determined in this case, for an initially pure or a completely disordered state of A. They involve an Ising or anisotropic Heisenberg coupling and an external field.Comment: 5 pages revte

    Terminal velocity and drag reduction measurements on superhydrophobic spheres

    Get PDF
    Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons

    Topology and Bistability in liquid crystal devices

    Get PDF
    We study nematic liquid crystal configurations in a prototype bistable device - the Post Aligned Bistable Nematic (PABN) cell. Working within the Oseen-Frank continuum model, we describe the liquid crystal configuration by a unit-vector field, in a model version of the PABN cell. Firstly, we identify four distinct topologies in this geometry. We explicitly construct trial configurations with these topologies which are used as initial conditions for a numerical solver, based on the finite-element method. The morphologies and energetics of the corresponding numerical solutions qualitatively agree with experimental observations and suggest a topological mechanism for bistability in the PABN cell geometry

    Model solution for volume reflection of relativistic particles in a bent crystal

    Full text link
    For volume reflection process in a bent crystal, exact analytic expressions for positively- and negatively-charged particle trajectories are obtained within a model of parabolic continuous potential in each interplanar interval, with the neglect of incoherent multiple scattering. In the limit of the crystal bending radius greatly exceeding the critical value, asymptotic formulas are obtained for the particle mean deflection angle in units of Lindhard's critical angle, and for the final beam profile. Volume reflection of negatively charged particles is shown to contain effects of rainbow scattering and orbiting, whereas with positively charged particles none of these effects arise within the given model. The model predictions are compared with experimental results and numerical simulations. Estimates of the volume reflection mean angle and the final beam profile robustness under multiple scattering are performed.Comment: 21 pages, 11 figure
    • …
    corecore