1,425 research outputs found

    Optimal Linear Shrinkage Estimator for Large Dimensional Precision Matrix

    Full text link
    In this work we construct an optimal shrinkage estimator for the precision matrix in high dimensions. We consider the general asymptotics when the number of variables pp\rightarrow\infty and the sample size nn\rightarrow\infty so that p/nc(0,+)p/n\rightarrow c\in (0, +\infty). The precision matrix is estimated directly, without inverting the corresponding estimator for the covariance matrix. The recent results from the random matrix theory allow us to find the asymptotic deterministic equivalents of the optimal shrinkage intensities and estimate them consistently. The resulting distribution-free estimator has almost surely the minimum Frobenius loss. Additionally, we prove that the Frobenius norms of the inverse and of the pseudo-inverse sample covariance matrices tend almost surely to deterministic quantities and estimate them consistently. At the end, a simulation is provided where the suggested estimator is compared with the estimators for the precision matrix proposed in the literature. The optimal shrinkage estimator shows significant improvement and robustness even for non-normally distributed data.Comment: 26 pages, 5 figures. This version includes the case c>1 with the generalized inverse of the sample covariance matrix. The abstract was updated accordingl

    Mid-infrared Gas Sensing Using Graphene Plasmons Tuned by Reversible Chemical Doping

    Get PDF
    Highly confined plasmon modes in nanostructured graphene can be used to detect tiny quantities of biological and gas molecules. In biosensing, a specific biomarker can be concentrated close to graphene, where the optical field is enhanced, by using an ad-hoc functional layer (e.g., antibodies). Inspired by this approach, in this paper we exploit the chemical and gas adsorption properties of an ultrathin polymer layer deposited on a nanostructured graphene surface to demonstrate a new gas sensing scheme. A proof-of-concept experiment using polyethylenimine (PEI) that is chemically reactive to CO2 molecules is presented. Upon CO2 adsorption, the sensor optical response changes because of PEI vibrational modes enhancement and shift in plasmon resonance, the latter related to polymer-induced doping of graphene. We show that the change in optical response is reversed during CO2 desorption. The demonstrated limit of detection (LOD) of 390 ppm corresponds to the lowest value detectable in ambient atmosphere, which can be lowered by operating in vacuum. By using specific adsorption polymers, the proposed sensing scheme can be easily extended to other relevant gases, for example, volatile organic compounds.Peer ReviewedPostprint (published version

    Adaptive Subcarrier PSK Intensity Modulation in Free Space Optical Systems

    Full text link
    We propose an adaptive transmission technique for free space optical (FSO) systems, operating in atmospheric turbulence and employing subcarrier phase shift keying (S-PSK) intensity modulation. Exploiting the constant envelope characteristics of S-PSK, the proposed technique offers efficient utilization of the FSO channel capacity by adapting the modulation order of S-PSK, according to the instantaneous state of turbulence induced fading and a pre-defined bit error rate (BER) requirement. Novel expressions for the spectral efficiency and average BER of the proposed adaptive FSO system are presented and performance investigations under various turbulence conditions and target BER requirements are carried out. Numerical results indicate that significant spectral efficiency gains are offered without increasing the transmitted average optical power or sacrificing BER requirements, in moderate-to-strong turbulence conditions. Furthermore, the proposed variable rate transmission technique is applied to multiple input multiple output (MIMO) FSO systems, providing additional improvement in the achieved spectral efficiency as the number of the transmit and/or receive apertures increases.Comment: Submitted To IEEE Transactions On Communication

    On the sum rate of ZF detectors in correlated K fading MIMO channels

    Get PDF
    This paper presents a detailed sum rate investigation of Zero-Forcing (ZF) detectors over composite multiple-input multiple-output (MIMO) channels. To this end, we consider the generic K distribution (Rayleigh/gamma distribution) to model the composite fading fluctuations and also assume the general case of semi-correlated small-scale fading. Novel exact analytical expressions are derived for the achievable sum rate followed by asymptotic expressions in the low Signal-to-Noise ratio (SNR) regime. In parallel, new, closed-form upper and lower bounds on the sum rate are derived that remain tight for all SNRs. The theoretical analysis is validated via a set of Monte-Carlo simulations

    Identifying Volunteer Core Competencies: Regional Differences

    Get PDF
    The study reported here surveyed direct service volunteers and agents in 12 states and identified 32 competencies for volunteers who deliver 4-H Youth Development programs and activities. Twenty of the 32 competencies were different when stratified by Extension region, illustrating that volunteer competencies have greater regional differences than previously thought. Volunteer competencies were statistically most different in the Southern region, while competencies in the North Central and Western regions were most similar. A national curriculum that focuses upon the 12 competencies that were not found to be significantly different between regions could be developed

    Smoking and Idiopathic Pulmonary Fibrosis

    Get PDF
    Idiopathic pulmonary fibrosis (IPF) is a disease of unknown etiology with considerable morbidity and mortality. Cigarette smoking is one of the most recognized risk factors for development of IPF. Furthermore, recent work suggests that smoking may have a detrimental effect on survival of patients with IPF. The mechanism by which smoking may contribute to the pathogenesis of IPF is largely unknown. However, accumulating evidence suggests that increased oxidative stress might promote disease progression in IPF patients who are current and former smokers. In this review, potential mechanisms by which cigarette smoking affects IPF, the effects of cigarette smoking on accelerated loss of lung function in patients with IPF, key genetic studies evaluating the potential candidate genes and gene-environment (smoking) interaction, diagnosis, and treatment with emphasis on recently closed and ongoing clinical trials are presented
    corecore