12 research outputs found

    A Magnetically Supported Photodissociation Region in M17

    Get PDF
    The southwestern (SW) part of the Galactic H II region M17 contains an obscured ionization front that is most easily seen at infrared and radio wavelengths. It is nearly edge-on, thus offering an excellent opportunity to study the way in which the gas changes from fully ionized to molecular as radiation from the ionizing stars penetrates into the gas. M17 is also one of the very few H II regions for which the magnetic field strength can be measured in the photodissociation region ( PDR) that forms the interface between the ionized and molecular gas. Here we model an observed line of sight through the gas cloud, including the H+, H0 (PDR), and molecular layers, in a fully self-consistent single calculation. An interesting aspect of the M17 SW bar is that the PDR is very extended. We show that the strong magnetic field that is observed to be present inevitably leads to a very deep PDR, because the structure of the neutral and molecular gas is dominated by magnetic pressure, rather than by gas pressure, as previously had been supposed. We also show that a wide variety of observed facts can be explained if a hydrostatic geometry prevails, in which the gas pressure from an inner X-ray hot bubble and the outward momentum of the stellar radiation field compress the gas and its associated magnetic field in the PDR, as has already been shown to occur in the Orion Nebula. The magnetic field compression may also amplify the local cosmic-ray density. The pressure in the observed magnetic field balances the outward forces, suggesting that the observed geometry is a natural consequence of the formation of a star cluster within a molecular cloud

    A Magnetically-Supported Photodissociation Region in M17

    Get PDF
    The southwestern (SW) part of the Galactic H II region M17 contains an obscured ionization front that is most easily seen at infrared and radio wavelengths. It is nearly edge-on, thus offering an excellent opportunity to study the way in which the gas changes from fully ionized to molecular as radiation from the ionizing stars penetrates into the gas. M17 is also one of the very few H II regions for which the magnetic field strength can be measured in the photodissociation region ( PDR) that forms the interface between the ionized and molecular gas. Here we model an observed line of sight through the gas cloud, including the H+, H0 (PDR), and molecular layers, in a fully self-consistent single calculation. An interesting aspect of the M17 SW bar is that the PDR is very extended. We show that the strong magnetic field that is observed to be present inevitably leads to a very deep PDR, because the structure of the neutral and molecular gas is dominated by magnetic pressure, rather than by gas pressure, as previously had been supposed.We also show that a wide variety of observed facts can be explained if a hydrostatic geometry prevails, in which the gas pressure from an inner X-ray hot bubble and the outward momentum of the stellar radiation field compress the gas and its associated magnetic field in the PDR, as has already been shown to occur in the Orion Nebula. The magnetic field compression may also amplify the local cosmic-ray density. The pressure in the observed magnetic field balances the outward forces, suggesting that the observed geometry is a natural consequence of the formation of a star cluster within a molecular cloud.Comment: Published as 2007, ApJ,658,111

    Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC

    No full text
    An earth-abundant and relatively less toxic, quatemary Cu2ZnSnSe4 (CZTSe) quantum dots (QDs) were prepared by hot injection method at low temperature to use as a sensitizer for QDSC. The formation of tetragonal phase and stoichiometry were confirmed by X-ray diffraction (XRD), Raman spectroscopy and energy dispersive X-ray (EDX) analysis, respectively. The UV-Vis-NIR and photoluminescence spectroscopy was used to determine the bandgap (1.66 eV) and narrow emission (1050-1130 nm) range. Moreover, transmission electron microscopy (TEM) was used to find out the average size of CZTSe QDs and it was found to be similar to( )5 nm. It can highly adsorb on the porous TiO2 nanofibers (NFs) and enhance the absorbance due to its smaller size. The photoconversion efficiency was investigated using the prepared CZTSe QDs sensitized porous TiO2 NFs based QDSC and its photoconversion efficiency (PCE) was found to be 3.61% which is higher than that of the conventional TiO2 NFs based QDSC (eta approximate to 2.84%)

    Biomimetic multi-resolution analysis for robust speaker recognition

    Get PDF
    Humans exhibit a remarkable ability to reliably classify sound sources in the environment even in presence of high levels of noise. In contrast, most engineering systems suffer a drastic drop in performance when speech signals are corrupted with channel or background distortions. Our brains are equipped with elaborate machinery for speech analysis and feature extraction, understanding of which would presumably improve the performance of automatic speech processing systems under adverse conditions. The work presented here explores a biologically-motivated multi-resolution speaker information representation obtained by performing an intricate yet computationally-efficient analysis of the information-rich spectro-temporal attributes of the speech signal. We evaluate the proposed features in a speaker verification task performed on NIST SRE 2010 data. The biomimetic approach yields significant robustness in presence of non-stationary noise and reverberation, offering a new framework for deriving reliable features for speaker recognition and speech processing

    A Magnetically Supported Photodissociation Region in M17

    No full text
    The southwestern (SW) part of the Galactic H II region M17 contains an obscured ionization front that is most easily seen at infrared and radio wavelengths. It is nearly edge-on, thus offering an excellent opportunity to study the way in which the gas changes from fully ionized to molecular as radiation from the ionizing stars penetrates into the gas. M17 is also one of the very few H II regions for which the magnetic field strength can be measured in the photodissociation region ( PDR) that forms the interface between the ionized and molecular gas. Here we model an observed line of sight through the gas cloud, including the H+, H0 (PDR), and molecular layers, in a fully self-consistent single calculation. An interesting aspect of the M17 SW bar is that the PDR is very extended. We show that the strong magnetic field that is observed to be present inevitably leads to a very deep PDR, because the structure of the neutral and molecular gas is dominated by magnetic pressure, rather than by gas pressure, as previously had been supposed. We also show that a wide variety of observed facts can be explained if a hydrostatic geometry prevails, in which the gas pressure from an inner X-ray hot bubble and the outward momentum of the stellar radiation field compress the gas and its associated magnetic field in the PDR, as has already been shown to occur in the Orion Nebula. The magnetic field compression may also amplify the local cosmic-ray density. The pressure in the observed magnetic field balances the outward forces, suggesting that the observed geometry is a natural consequence of the formation of a star cluster within a molecular cloud

    THE UMD-JHU 2011 SPEAKER RECOGNITION SYSTEM

    No full text
    In recent years, there have been significant advances in the field of speaker recognition that has resulted in very robust recognition systems. The primary focus of many recent developments have shifted to the problem of recognizing speakers in adverse conditions, e.g in the presence of noise/reverberation. In this paper, we present the UMD-JHU speaker recognition system applied on the NIST 2010 SRE task. The novel aspects of our systems are: 1) Improved performance on trials involving different vocal effort via the use of linearscale features; 2) Expected improved recognition performance in the presence of reverberation and noise via the use of frequency domain perceptual linear predictor and cortical features; 3) A new discriminative kernel partial least squares (KPLS) framework that complements state-of-the-art back-end systems JFA and PLDA to aid in better overall recognition; and 4) Acceleration of JFA, PLDA and KPLS back-ends via distributed computing. The individual components of the system and the fused system are compared against a baseline JFA system and results reported by SRI and MIT-LL on SRE2010
    corecore