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Abstract

Humans exhibit a remarkable ability to reliably classify sound sources in the environment even in presence of high
levels of noise. In contrast, most engineering systems suffer a drastic drop in performance when speech signals are
corrupted with channel or background distortions. Our brains are equipped with elaborate machinery for speech
analysis and feature extraction, which hold great lessons for improving the performance of automatic speech
processing systems under adverse conditions. The work presented here explores a biologically-motivated
multi-resolution speaker information representation obtained by performing an intricate yet computationally-efficient
analysis of the information-rich spectro-temporal attributes of the speech signal. We evaluate the proposed features
in a speaker verification task performed on NIST SRE 2010 data. The biomimetic approach yields significant robustness
in presence of non-stationary noise and reverberation, offering a new framework for deriving reliable features for
speaker recognition and speech processing.

Introduction
In addition to the intended message, human voice car-
ries the unique imprint of a speaker. Just like finger-
prints and faces, voice prints are biometric markers with
tremendous potential for forensic, military, and commer-
cial applications [1]. However, despite enormous advances
in computing technology over the last few decades, auto-
matic speaker verification (ASV) systems still rely heavily
on training data collected in controlled environments,
and most systems face a rapid degradation in perfor-
mance when operating under previously unseen condi-
tions (e.g. channel mismatch, environmental noise, or
reverberation). In contrast, human perception of speech
and ability to identify sound sources (including voices) is
quite remarkable even at relatively high distortion levels
[2]. Consequently, the pursuit of human-like recognition
capabilities has spurred great interest in understanding
how humans perceive and process speech signals.
One of the intriguing processes taking place in the cen-

tral auditory system involves ensembles of neurons with
variable tuning to spectral profiles of acoustic signals. In
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addition to the frequency (tonotopic) organization emerg-
ing as early as the cochlea, neurons in the central auditory
system (specifically in the midbrain and more promi-
nently in the auditory cortex) exhibit tuning to a variety
of filter bandwidths and shapes [3]. This elegant neural
architecture provides a detailed multi-resolution analysis
of the spectral sound profile, which is presumably rele-
vant to speech and speaker recognition. Only few studies
so far have attempted to use this cortical representation
in speech processing, yielding some improvements for
automatic speech recognition at the expense of substan-
tial computational complexity [4,5]. To the best of our
knowledge, no similar work was done in ASV.
In the present report, we explore the use of a multi-

resolution analysis for robust speaker verification. Our
representation is simple, effective, and computationally-
efficient. The proposed scheme is carefully optimized to
be particularly sensitive to the information-rich spectro-
temporal attributes of the signal whilemaintaining robust-
ness to unseen noise distortions. The choice of model
parameters builds on our current knowledge of psy-
chophysical principles of speech perception in noise [6,7]
complemented with a statistical analysis of the dependen-
cies between spectral details of the message and speaker
information.We evaluate the proposed features in an ASV
system and compare it against one of the best performing
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systems in NIST 2010 SRE evaluation [8] under detrimen-
tal conditions such as white noise, non-stationary additive
noise, and reverberation.
The following section describes details of the proposed

multi-resolution spectro-temporal model. It is followed
by an analysis that motivates the choice of model param-
eters to maximize speaker information retention. Next,
we describe the experimental setup and results. We fin-
ish with a discussion of these results and comment
on potential extensions towards achieving further noise
robustness.

The biomimetic multi-resolution analysis
An overview of the processing chain described in this
section is presented in Figure 1.

Peripheral analysis
The speech signal is processed through a pre-emphasis
stage (implemented as a first-order high pass filter with
pre-emphasis coefficient 0.97), and a time-frequency audi-
tory spectrogram is generated using a biomimetic sound
processing model described in details in [9] and briefly
summarized here (Equation 1). First, the signal s(t) under-
goes a cochlear frequency analysis modeled by a bank
of 128 constant-Q (Q = 4) highly asymmetric band-
pass filters h(t; f ) equally spaced over the span of 51/3
octaves on a logarithmic frequency axis. The filterbank
output is a spatiotemporal pattern of cochlea basilarmem-
brane displacements ycoch(t, f ) over 128 channels. Next,
a lateral inhibitory network detects discontinuities in the
responses across the tonotopic (frequency) axis, resulting
in further filterbank frequency selectivity enhancement.
This step is modeled as a first-order differentiation oper-
ation across the channel array followed by a half-wave
rectifier and a short-term integrator. The temporal inte-
gration window is given by μ(t; τ) = e−t/τu(t) with time
constant τ = 10ms mimicking the further loss of phase-
locking observed in the midbrain. This time constant

controls the frame rate of the spectral vectors. Finally,
a nonlinear cubic root compression of the spectrum is
performed, resulting in an auditory spectrogram y(t, f ):

ycoch(t, f ) = s(t) ⊗t h(t; f ),
ylin(t, f ) = max(∂tycoch(t, f ), 0),

y(t, f ) = [
ylin(t, f ) ⊗t μ(t; τ)

]1/3 ,
(1)

where ⊗t represents convolution with respect to time.
The choice of the auditory spectrogram is motivated by its
neurophysiological foundation as well as its proven self-
normalization and robustness properties (see [10] for full
details).

Spectral cortical analysis
The auditory spectrogram is processed further in order to
capture the spectral details present in each spectral slice.
The processing is based on neurophysiological findings
that neurons in the central auditory pathway are tuned
not only to frequencies but also to spectral shapes, in par-
ticular to peaks of various widths on the log-frequency
axis [3,11,12]. The spectral width is characterized by a
parameter called scale and is measured in cycles per
octave, or CPO. Physiological data indicates that auditory
cortex neurons are highly scale-selective, thus expanding
the cochlear one-dimensional tonotopic axis onto a two-
dimensional sheet that explicitly encodes tonotopy as well
as spectral shape details (see Figures 1 and 2).
The cortical analysis is implemented using a bank of

modulation filters operating in the Fourier domain. The
algorithm processes each data frame individually. The
Fourier transform of each spectral slice y(t0, f ) is multi-
plied by a modulation filter HS(�;�c) that is tuned to
spectral features of scale �c. The filtering operates on the
magnitude of the signal. After filtering, the inverse Fourier
transform is performed and the real part is taken as the
new filtered slice. This process is then repeated with a

Figure 1 An outline of the cortical features extraction algorithm. A schematic diagram of the algorithm that transforms a speech waveform
into a sequence of cortical feature vectors.
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Figure 2 Details of the speech spectral analysis. (a) The speech spectrogram is analyzed separately at each time instant. Each spectrogram slice
is filtered through a bandpass filter HS(�;�c) parameterized by �c . The ∗ operator signifies the filtering operation. Four such filtering operations
yield four views of the same spectral slice; each view highlights different details about the spectrum, notably formant peaks and harmonic structure.
(b) Cortical features for clean and noisy versions of one phoneme \ow\. The plots show magnitude as a function of frequency and scale. For
visualization, the discrete image points have been interpolated in MATLAB using a bicubic interpolation routine. Notice the consistency of formant
peaks around 1 and 4 KHz and of harmonic energies at 2 CPO and 4 CPO despite the additive noise distortion. (c) Cortical features for different types
of additive noise. Note that the patterns exhibited are quite different. Subtle peaks due to harmonicity and formant structure of human speech can
be seen in the left panel (babble noise).

number of different�c, yielding a number of filtered spec-
trograms y(t, f ;�c), each with features of scale �c empha-
sized (see Figure 1). This set of spectrograms constitutes
the spectral cortical representation of the sound.
The filter HS(�;�c) is defined as

HS(�;�c) = (�/�c)
2e[1−(�/�c)2], 0 ≤ � ≤ �max, (2)

where �max is the highest spectral modulation frequency
(set at 12 CPO given our spectrogram resolution of 24
channels per octave).

Choice of spectral parameters
The set of scales �c is chosen by dividing the spectral
modulation axis into equal energy regions using a train-
ing corpus (TIMIT database [13]) as described below.

Define the average spectral modulation profile Y (�) =
〈〈|Y (�; t0)|〉T 〉� as the ensemble mean of the magnitude
Fourier transform of the spectral slice y(t0, f ) averaged
over all times T and over entire speech corpus � . The
resulting ensemble profile (shown in Figure 3a) is then
divided intoM equal energy regions �k :

�k =
∫ �k+1

�k

Y (�)d�, �k = �k+1, k = 1, . . . ,M − 1,

(3)

where �k and �k+1 denote the lower and upper cut-
offs for kth band, �1 = 0, and �M = 4.a This sam-
pling scheme ensures that the high energy regions are
sampled more densely, which has the dual advantage of
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Figure 3 Speech signal spectral analysis. (a) Average spectral modulation profile Y(�) = 〈〈|Y(�; t0)|〉T 〉� ; (b) Top panel: MI between feature
representation and speech message as a function of scale. Bottom panel: MI between feature representation and speaker identity as a function of
scale.

sampling the given modulation space with a relatively
small set of scales and emphasizing high-energy signal
components, which are presumably noise-robust. Set-
ting M = 5 results in cutoffs at {0.18, 0.59, 1.34, 2.36, 4},
which are approximated to the nearest log-scale as �c =
{0.25, 0.5, 1.0, 2.0, 4.0}. Finally, in order to put less empha-
sis on message-dominant regions of the spectrum, we
drop the 0.25 CPO filter, which carries mostly articu-
latory and formant-specific information relevant to the
speech message (analysis presented in the next section).
The remaining set of �c = {0.5, 1.0, 2.0, 4.0} is found to
be a good tradeoff between computational complexity and
system performance.

Temporal filtration
In this stage, the spectral cortical features are processed
through a bandpass temporal modulation filter to remove
information that is believed to be mostly irrelevant. It
was shown in [14] that the neurons in the auditory cor-
tex are mostly sensitive to the modulation rates between
0.5 and 12Hz and that the same modulation range repre-
sents the information crucial for speech comprehension
[7]. Accordingly, the filtering is performed by multiply-
ing the Fourier transform of the time sequence of each
spectral feature by a bandpass filter HT (w;wl,wh):

HT (w;wl,wh] ) = (αw)2 e[1−(αw)2],

α =
⎧⎨
⎩

1/wl, 0 ≤ w < wl,
1/w, wl ≤ w ≤ wh,
1/wh, wh < w ≤ wmax,

(4)

where wl = 0.5Hz, wh = 12.0Hz, wmax = 1/(2tf ), and
tf = 10ms (the frame length). After filtering in Fourier
domain, the inverse Fourier transform is performed and
the real part of the output forms the temporally filtered
spectral cortical representation of the sound yw(t, f ;�c).

This operation is performed on an utterance by utterance
basis.

Cortical features
To reduce computational complexity and to allow use
of state-of-the-art speaker verification machinery (which
generally expects a relatively low-dimensional input), the
spectral cortical representation is downsampled in fre-
quency by a factor of 4 (Figure 1). The resulting feature
representation has a dimensionality of 128 (32 auditory
frequency channels multiplied by four scales used for
analysis). The features are then normalized to zero mean
and unit variance for each utterance, yielding the reduced
set of spectrograms ŷw(t, f ;�c). Principal component
analysis is used to further reduce the feature dimensional-
ity to 19. This number is chosen for consistency with the
dimensionality of the standard Mel-Frequency Cepstral
Coefficients (MFCC) feature set used for speaker recog-
nition. The reduced features, along with their first- and
second-order derivatives, form the final 57-dimensional
cortical feature vector used for the speaker verification
task.

Speech information versus speaker information
The speech signal carries both speech message and
speaker identity information in distinct yet overlapping
components. Separation of these elements is a non-trivial
task in general. In the multi-resolution framework pre-
sented above, the broadest filters (0.25 and 0.5 CPO)
capture primarily the overall spectral profile and for-
mant peaks, while the others (1, 2, and 4 CPO) reflect
narrower spectral details such as harmonics and subhar-
monic structure. In order to select a set of scales (�c)
that are most relevant for the speaker recognition task,
we analyze the mutual information (MI) between the fea-
ture vector (X), the speech message (Y1), and the speaker
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identity (Y2). The MI is a measure of the statistical depen-
dence between random variables [15] and is defined for
two discrete random variables X and Y as

I(X;Yi) =
∑

x∈X,y∈Yi
p(x, y) log2

p(x, y)
p(x)p(y)

. (5)

To estimate the MI, the continuous feature vector is
quantized by dividing its support into cells of equal vol-
ume. To characterize the speech message, phoneme labels
from the TIMIT corpus are first divided into four broad
phoneme classes. The variable Y1 thus takes four dis-
crete values representing the phoneme categories: vowels,
stops, fricatives, and nasals. The average MI (taken as
the mean MI across all the frequency bands for a given
scale) between the feature vector and the speech message
is shown in Figure 3b (top) as a function of scale. For the
speaker identity MI test, the TIMIT “sa1” speech utter-
ance (She had your dark suit in greasy wash water all year)
spoken by 100 different subjects is used; thus, Y2 takes
100 discrete values representing the speaker. The average
MI between the feature vector and the speaker identity is
shown in Figure 3b (bottom), again as a function of scale.b
Notice that while the lower scale (0.25 CPO) clearly

provides significantly more information about the under-
lying linguistic message, the MI peak in Figure 3c (bot-
tom) is centered at 1 CPO, highlighting the significance
of pitch and harmonically-related frequency channels in
representing speaker-specific information. In order to
put less emphasis on message-carrying features of the
speech signal, we drop the 0.25 CPO filter at the feature
encoding stage for our ASV system and choose �c =
{0.5, 1.0, 2.0, 4.0} CPO.c

Experiments and results
Recognition setup
Text independent speaker verification experiments are
conducted on the NIST 2010 speaker recognition eval-
uation (SRE) data set [8]. The extended core task of the
evaluation involves 6.9million trials broken down into
nine common conditions reflecting a variety of channel
mismatch scenarios [8] (see Table 1).
The front end of the implemented ASV system uses

either the 57-dimensional MFCC feature vector or the 57-
dimensional cortical feature vector. The MFCC feature
vector is computed by invoking RASTAMAT “melfcc”
function with ‘numcep’ parameter set to 20, dropping
the first (energy) component of the output, and append-
ing first- and second-order derivatives of the resultant
feature vector. The cortical feature vector is obtained as
described in the previous sections. For fair comparison
between MFCC and cortical features, MFCC was supple-
mented with mean subtraction, variance normalization,
and RASTA filtering [16] applied at the utterance level.

Table 1 List of conditions for NIST 2010 extended core task

Condition Description

1 Microphone training, same microphone testing

2 Microphone training, different microphone testing

3 Microphone training, telephone testing

4 Microphone training, telephone conversation

recorded with roommicrophone testing

5 NVE telephone training, NVE telephone testing

6 NVE telephone training, HVE telephone testing

7 Microphone training, HVE telephone testing

8 NVE telephone training, LVE telephone testing

9 Microphone training, LVE telephone testing

NVE, LVE, and HVE stand for normal, low, and high vocal effort, respectively.

Such processing parallels the temporal filtering and nor-
malization performed on cortical features. A combination
of ASR output provided by NIST and an in-house energy-
based VAD system is used to drop all non-speech frames
from input data.
The back-end is a robust state-of-the-art UBM-GMM

system [17,18]. In a UBM-GMM system, each speaker’s
distribution of feature vectors is modeled as a mixture
of Gaussians, forming a Gaussian mixture speaker model
(GMSM). In addition, a universal background model
(UBM) defines a “generic” speaker. The UBM typically
has hundreds of thousands of parameters and is trained
on a very large amount of data (hundreds of hours of
speech), which should include speech produced by a large
number of individual speakers (in our case, the 2048-
center diagonal-covariance UBM is trained on NIST SRE
2004, 2005, 2006, and 2008; Fisher; Switchboard-2; and
Switchboard-Cellular databases). As the amount of speech
available per individual speaker is typically much less than
required to train the speaker model from scratch, the
GMSM is produced by adapting UBM means so that the
resulting model best describes the available speaker data.
Finally, given the UBM, the candidate GMSM, and the
audio file, the system extracts the feature vectors from the
audio file and computes the log-likelihoods of these fea-
ture vectors belonging to the GMSM and to the UBM.
The difference between these log-likelihoods constitutes
the output score for this particular trial.
Our ASV system additionally employs the technique

known as joint factor analysis [19,20]. JFA use enables
channel variability compensation by offsetting the chan-
nel effects and more robust speaker model estimation
by using more informative prior on speaker model dis-
tribution. To use JFA in the described framework, an
alternative representation of the speaker model—a sin-
gle vector Z (“supervector”)—is formed by concatenaging
all GMSM means. JFA is trained in advance on a large
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annotated collection of audio files to learn the channel
subspace (the basis over which Z preferentially varies
when the same speaker’s voice is presented over different
channels) and the speaker subspace (the basis over which
Z preferentially varies when different speakers are pre-
sented over the same channel). In our system, the dimen-
sionalities of speaker subspace and of channel subspace
are 300 and 150, respectively. Then, when processing
the previously unseen data, components of inter-speaker
differences attributable to speaker/to channel are empha-
sized/canceled, respectively. This is done by projecting
corresponding supervectors into speaker/channel sub-
spaces, using speaker subspace projection of Z to modify
GMSM, using channel subspace projection of Z to mod-
ify UBM, and performing scoring with these modified
GMSM and UBM. Also, as the log-likelihood calcula-
tion is expensive, in our system an approximation to it is
computed based on an inner product [20] is used.
Finally, the obtained scores are subject to ZT-

normalization [21], and the decision threshold minimiz-
ing equal error rate (EER) is chosen (separately for each
condition).

Noise conditions
Every trial in NIST SRE 2010 consists of computing the
matching score between a speakermodel and an audio file.
To evaluate the noise robustness of the proposed corti-
cal features, several distorted versions of these audio files
are created by adding different types of noise reflecting a
variety of real world scenarios:

• White noise at signal-to-noise ratio (SNR) levels from
24 to 0 dB in 6 dB steps;

• Babble noise (from Aurora database [22]), same SNR
levels;

• Subway noise (from Aurora database [22]), same SNR
levels;

• Simulated reverberation with RT60 from 200 to
1,200ms in steps of 200ms.

It is important to mention that all training (UBM, JFA,
and speaker model training) is done exclusively on clean
data, and only the test audio files are corrupted. Note
also that the train-test mismatch created by addition
of noise/reverberation is superimposed on the train-test
mismatch inherent to the SRE 2010 data.

Results
Figure 4 shows the speaker verification performance in
terms of EER for the cortical features and for the MFCC
features as a function of noise type/strength and trial
condition. The results clearly demonstrate that the pro-
posed cortical features provide substantially lower EER

than the MFCC as noise level increases, indicating their
robustness. The average performance for each noise type
and trial condition is shown in Table 2. On average
(across all conditions and all noise types), the cortical-
features-based system yields 15.9% relative EER improve-
ment over the robust state-of-the-art MFCC system. It
is worth noting that the proposed approach is outper-
formed by the MFCC-based approach in only 4 out of the
36 cases. Because the proposed metric incorporates both
a biomimetic auditory spectrogram previously shown to
exhibit some noise-robustness characteristics [10] as well
as multiresolution decomposition, we investigated fur-
ther the contribution of both components in the reported
improvements. We tested the system using the auditory
spectrogram alone or an adaptation of the auditory spec-
trogram described here, coupled with a cepstral transfor-
mation. Neither system performed as well as the proposed
multiresolution decomposition, hence strengthening the
claim that our proposed multiresolution analysis is indeed
responsible for the performance improvements shown in
Table 2.
In some ASV applications, metrics other than EER

may be more relevant. For example, in certain biomet-
ric speaker verification systems the key requirement is
a low false alarm rate. We present our results here in
terms of two additional metricsmore suitable in such case,
namely Miss-10 and quadratic DCF (decision cost func-
tion) metrics. These two metrics were used in the NIST
2011 IARPA BEST program SRE [23]. TheMiss-10 metric
is defined as the false alarm rate PFA obtained when the
decision threshold is set such that the miss rate PMiss =
10%, and the quadratic DCF is defined as

DCF = CMiss×PMiss
2×Ptarget+CFA×PFA×(1−Ptarget)

(6)

with the parameter values CMiss = 100, CFA = 10, and
Ptarget = 0.01.
The average verification performance for each noise

type using the Miss-10 and quadratic DCF metrics is
shown in Tables 3 and 4, respectively. As seen from the
data, in the low false alarm region the proposed corti-
cal features outperform the robust state-of-the-art MFCC
system with even larger margin: 28.8% relative using the
Miss-10 metric and 22.6% relative using the quadratic
DCF metric.

Discussion and conclusions
In this report, we explore the applicability of a multi-
resolution analysis of speech signals to ASV. This frame-
work maps the speech signal onto a rich feature space,
highlighting and separating information about the glot-
tal excitation signal, glottal shape, vocal tract geometry,
and articulatory configuration (as each of these elements



Nemala et al. EURASIP Journal on Audio, Speech, andMusic Processing 2012, 2012:22 Page 7 of 10
http://asmp.eurasipjournals.com/content/2012/1/22

Figure 4 Evaluation results. Performance of the proposed cortical features (red filled squares) and enhanced MFCC features (black open circles)
on NIST SRE 2010 “extended core” database as a function of noise level, noise type, and condition. In each subplot, the noise level is shown on X axis
and the EER (in percents) is on Y axis. Columns and rows of subplots belong to the same noise type and to the same condition, respectively. Note
the Y-axis ranges are not the same in the subplots.
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Table 2 Average ASV performance (EER, %) as a function of noise type and condition

Cond.
Babble (0–24 dB) White (0–24 dB) Subway (0–24 dB) Reverb (200–1,200ms)

MFCC Cortical MFCC Cortical MFCC Cortical MFCC Cortical

1 6.43 5.24 12.3 7.93 8.5 6.97 9.39 6.87

2 11.47 9.09 18.06 12.71 14.1 11.55 13.88 9.58

3 7.33 6.31 10.86 8.87 8.89 7.84 16.70 14.96

4 7.86 6.78 14.88 10.87 10.36 8.79 12.66 9.78

5 6.39 5.98 8.52 7.55 7.70 6.89 14.05 10.59

6 10.45 9.95 11.04 10.48 11.12 10.39 20.00 16.14

7 9.62 10.64 13.30 12.67 10.67 12.09 19.21 16.65

8 5.19 5.46 7.19 6.48 6.00 6.04 12.78 9.48

9 6.84 6.00 13.58 11.46 8.94 8.59 9.43 6.84

is an underlying factor for features of different width
located in different areas on the log-frequency axis; see
e.g. [24]). The cortical representation can be viewed as
a “local” variant (w.r.t. log-frequency axis) of the analysis
provided by MFCC analysis. This analogy stems from the
fact that MFCC roughly correspond to spectral features
of different widths integrated over the whole frequency
range. In this work, both the “global-integration” MFCC
approach and the “local” cortical approach are tested in
a state-of-the-art ASV system on the NIST SRE 2010
dataset. While both perform comparably in clean condi-
tion, the cortical features are substantially more robust on
noisy data, including non-stationary distortions as well as
reverberation.
One of the intuitions behind the robustness observed

in the proposed features is the fact that speech and noise
generally exhibit different spectral shapes while occupy-
ing an overlapping spectral range. The expansion of the
spectral axis with the multi-resolution analysis allows the
extrication of some speech components from the masking
noise, suppressing the noise components and providing
for increased robustness. Furthermore, by highlighting
the range between 0.5 and 4 CPO, the model stresses the

most speaker-informative regions in the speech spectrum,
which in turn map onto a modulation space to which
humans are highly sensitive [7]. Such range is also com-
mensurate with neurophysiological tuning observed in
mammalian auditory cortex with most neurons concen-
trated around a spectral tuning of the order of few CPOs
[3,14]. A similar emphasis is put on the temporal dynam-
ics of the signal by underscoring the region between 0.5
and 12Hz, which defines natural boundaries for speech
perception in noise by human listeners [7,25-28] and
mostly coincides with temporal tuning of mammalian cor-
tical neurons [14]. Higher temporal modulation frequen-
cies represent mostly the syllabic and segmental rate of
speech [2].
Unlike comparable multi-resolution schemes recently

developed [4,5], the proposed approach does not involve
dimension-expanded representations (close to 30,000
dimensions, which inherently require computationally-
expensive schemes and therefore have limited applica-
bility). Instead, our model is constrained to lie in a
perceptually-relevant spectral modulation space and fur-
ther uses a careful sampling scheme to encode the infor-
mation with only four spectral analysis filters. This has

Table 3 Average ASV performance (Miss-10metric, %) as a function of noise type and condition

Cond.
Babble (0–24 dB) White (0–24 dB) Subway (0–24 dB) Reverb (200–1,200ms)

MFCC Cortical MFCC Cortical MFCC Cortical MFCC Cortical

1 5.3 3.2 17.2 7.9 9.4 6.0 9.1 4.6

2 16.6 10.8 31.3 18.1 22.9 16.4 19.8 9.5

3 6.2 4.4 14.0 9.0 9.2 6.9 26.5 21.9

4 8.1 5.7 22.9 13.7 13.0 9.9 16.9 9.9

5 4.9 3.7 9.4 6.7 7.0 5.3 20.3 11.8

6 11.6 10.2 13.6 11.4 13.2 11.2 35.6 25.1

7 11.8 12.5 18.6 16.6 13.0 16.5 34.2 26.6

8 3.2 2.9 7.7 5.0 4.7 3.9 17.0 9.4

9 6.5 5.5 21.4 15.4 11.0 9.9 9.0 4.6
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Table 4 Average ASV performance (quadratic DCFmetric) as a function of noise type and condition

Cond.
Babble (0–24 dB) White (0–24 dB) Subway (0–24 dB) Reverb (200–1,200ms)

MFCC Cortical MFCC Cortical MFCC Cortical MFCC Cortical

1 0.129 0.098 0.371 0.211 0.208 0.147 0.219 0.150

2 0.247 0.183 0.506 0.342 0.356 0.266 0.353 0.221

3 0.149 0.116 0.282 0.196 0.199 0.155 0.481 0.403

4 0.176 0.136 0.446 0.287 0.276 0.199 0.317 0.237

5 0.139 0.114 0.186 0.150 0.171 0.136 0.379 0.262

6 0.236 0.230 0.255 0.240 0.245 0.241 0.557 0.457

7 0.231 0.240 0.452 0.362 0.302 0.300 0.543 0.486

8 0.105 0.088 0.154 0.119 0.122 0.105 0.331 0.212

9 0.134 0.105 0.405 0.288 0.218 0.175 0.220 0.145

the dual advantage of producing a feature space that is
both low-dimensional and highly robust. The careful opti-
mization of model parameters is necessary to strike a
balance between simple and efficient computation and
noise robustness.
Importantly, in our approach no model components

have been customized in any way to deal with a specific
noise condition, making it suitable for a wide range of
acoustic environments. In addition, the model has been
minimally customized for the speaker recognition task
and can in fact provide a general framework for a vari-
ety of speech processing tasks. Our preliminary results
do indeed show great robustness of a similar scheme for
automatic speech recognition. It is therefore essential to
emphasize that the performance obtained with the corti-
cal features is solely a property of the features themselves
and is achieved without any noise compensation tech-
niques. Our ongoing efforts are aimed at achieving further
improvements by applying the described multi-resolution
cortical analysis on enhanced spectral profiles obtained
using speech enhancement techniques, which involve
estimation of noise characteristics in various forms [29].

Endnotes
aWe constraint the range of spectral modulations to 4
CPO, which covers more than 90% of the entire spectral
modulation energy in speech and is most important for
speech comprehension [7].
bThe difference in MI levels between the speech message
and speaker identity may be attributed to the observation
that the speech signal encodes more information about
the underlying linguistic message than about the speaker.
cIn addition to the MI analysis, we performed an empir-
ical test regarding use of 0.25 CPO filter. An experiment
was run on clean data with �c = {0.25, 0.5, 1.0, 2.0} CPO
and yielded a 3.4% EER—a decrease of performance com-
pared with 2.7% EER for the system that used �c =
{0.5, 1.0, 2.0, 4.0} CPO.
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