52,655 research outputs found
A mathematical investigation of a heat transfer configuration
Solutions to heat transfer problems using Laplace transfor
The stress-corrosion behavior of Al-Li-Cu alloys: A comparison of test methods
Two powder metallurgy processed (Al-Li-Cu) alloys with and without Mg addition were studied in aqueous 3.5% NaCl solution during the alternate immersion testing of tuning fork specimens, slow crack growth tests using fracture mechanics specimens, and the slow strain rate testing of straining electrode specimens. Scanning electron microscopy and optical metallography were used to demonstrate the character of the interaction between the Al-Li-Cu alloys and the selected environment. Both alloys are susceptible to SC in an aqueous 3.5% NaCl solution under the right electrochemical and microstructural conditions. Each test method yields important information on the character of the SC behavior. Under all conditions investigated, second phase particles strung out in rows along the extrusion direction in the alloys were rapidly attacked, and played principal role in the SC process. With time, larger pits developed from these rows of smaller pits and under certain electrochemical conditions surface cracks initiated from the larger pits and contributed directly to the fracture process. Evidence to support slow crack growth was observed in both the slow strain rate tests and the sustained immersion tests of precracked fracture mechanics specimens. The possible role of H2 in the stress corrosion cracking process is suggested
Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing
Radiation counting technique allows density measurement of metals in high-pressure/ high-temperature environment
Radioactive tracers induced by neutron irradiation provide a gamma ray flux proportional to the density of a metal, allowing density measurement of these metals in extreme high-temperature and high-pressure environments. This concept is applicable to most metals, as well as other substances
Study made of resistance of stainless steels to zinc-vapor corrosion
Study of the corrosion resistance of several stainless steels to zinc vapor revealed that some stainless steels could be employed for use in zinc processing equipment housings or vapor lines
Markov Chain Modeling of Polymer Translocation Through Pores
We solve the Chapman-Kolmogorov equation and study the exact splitting
probabilities of the general stochastic process which describes polymer
translocation through membrane pores within the broad class of Markov chains.
Transition probabilities which satisfy a specific balance constraint provide a
refinement of the Chuang-Kantor-Kardar relaxation picture of translocation,
allowing us to investigate finite size effects in the evaluation of dynamical
scaling exponents. We find that (i) previous Langevin simulation results can be
recovered only if corrections to the polymer mobility exponent are taken into
account and that (ii) the dynamical scaling exponents have a slow approach to
their predicted asymptotic values as the polymer's length increases. We also
address, along with strong support from additional numerical simulations, a
critical discussion which points in a clear way the viability of the Markov
chain approach put forward in this work.Comment: 17 pages, 5 figure
Use of steel and tantalum apparatus for molten Cd-Mg-Zn alloys
Steel and tantalum apparatus contains various ternary alloys of cadmium, zinc, and magnesium used in pyrochemical processes for the recovery of uranium-base reactor fuels. These materials exhibit good corrosion resistance at the high temperatures necessary for fuel separation in liquid metal-molten salt solvents
Iterated function systems, representations, and Hilbert space
This paper studies a general class of Iterated Function Systems (IFS). No
contractivity assumptions are made, other than the existence of some compact
attractor. The possibility of escape to infinity is considered. Our present
approach is based on Hilbert space, and the theory of representations of the
Cuntz algebras O_n, n=2,3,.... While the more traditional approaches to IFS's
start with some equilibrium measure, ours doesn't. Rather, we construct a
Hilbert space directly from a given IFS; and our construction uses instead
families of measures. Starting with a fixed IFS S_n, with n branches, we prove
existence of an associated representation of O_n, and we show that the
representation is universal in a certain sense. We further prove a theorem
about a direct correspondence between a given system S_n, and an associated
sub-representation of the universal representation of O_n.Comment: 22 pages, 3 figures containing 7 EPS graphics; LaTeX2e ("elsart"
document class); v2 reflects change in Comments onl
- …