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CHAPTER I
INTRODUCTION

One of the most powerful methods of dealing with the
differential equations of applied mathematics is the Laplace
transformation method. This method is especially well
adapted to the solution of problems in conduction of heat.

In this introductory chapter we will define the

. Laplace transform, the inverse Laplace transform, and briefly

discuss some of the properties of the Laplace transformation
method and its use in solving systems of differential
equations. The error function and Hermite polynomials
appear in the body of the thesis as the result of certain
inversions, so definitions of these functions will also be

included.

Definition 1.1: Let T be a function of g specified

for 6 > 0. Then the Laplace transform of T, denoted by

L{T(6)}, is the function defined by

L{T(8)} = t(s) = Jwe-seT(e)de
0

if there exists a complex number s such that the abovev}
integral converges. If no such s exists, the Laplace trans-
form does not exist. 4

Note; Strictly speaking we should say that if T is

a function defined by y = T(6) then the Laplace transform of
1
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T, denoted by L{T}, is the function defined by

L{T}(s) = gwe_seT(e)de. Instead of this notation we will
use the shorter though incorrect notation L{T(e)},

Definition 1.2: 1If the Laplace transform of a

function T is t(s), i.e. if L{T(e)} = t(s), then T is called
an inverse Laplace transform of t(s) and we write symboli-
cally T = L’l{t(s)} where L™% is called the inverse Laplace
transformation operator. |

One means of obtaining the inverse of a Laplace

transform is given in the following theorem.

Theorem 1.1: (Complex Inversion Theorem) If

t(s) = L{T(e)} then

ytie
T = i J %0t (s)ds,
y-le

where y is a real number so large that all the singularities
of t(s) lie to the left of the line (y-iw,y+iw).

Another useful theorem 1is

Theorem 1.2: Let L{T(e8)} = f fn(s) satisfy the
n=1

following conditions
1. There exists a y such that all singularities of
f and £ lie to the left of the line (y-iw,y+iw).

2. LT ()} = £,(s).

(9]
i &8

esefn(s) converges uniformly for s on the

n=1

line (y-i®,y+i®). Then T(8) = |} T, (0).
n=1
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In the body of the thesis the Laplace transforms of
certain functions are used. Boundary conditions‘are also
transformed and are used as bondary conditions of the trans-
formed differential equations. In performing these trans-
formations, certain assumptions have been made regarding the
nature of the functions involved. To help clarify whatl
these assﬁmptions are, we first present a set of sufficient
conditions for the existence of the Laplace transform, and
then justify a few of the transformations  on boundary

conditions that are made later in the thesis.

Definition 1.3: If real constants M »> 0, N> 0 and

vy exist such that for all ¢ > N

e Y T(e)] <M
we say that T(e) is a function of exponential order y as
8 » » or, briefly, is of exponential order.

Theorem 1.3: If a function T is piecewise continuous

in every finite interval 0 < 6 < N and of exponential order
y for 6 >N, then its Laplace transform t(s) exists for all
s > Y. |

We thus assume whenever necessary that the functions
involved satisfy the conditions of Theorem 1.3.

Consider the system of partial differential equations

nN
-3
Vo)
=
N
=
N
(s34

3 - R T,
(1.1 5V7 *YX3S T a7 e

—
Q
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where Q, R, ki, S, dl, and a, are constants which are
defined later, and T, and T, are functions of'(¢,e) and
(x,6) respectively. |

One of the boundary conditions used later iﬂ
connection with this system is Tl(O,e) = TZ(O,e), o6 > 0.
The Laplaée transform of this condition is written

) t,(0,s) = t,(0,s).
To see why this is true we have only to write t; and t, in
terms of their integral definitions. That is

J e 38T, (0,0)do
0

tl(O,s)

"

J e-ngz(O,e)de = t,(0,s).
. .

The Laplace transform of thé first equation in (1.1) is

~given by the equation

a2 R B 2R (st - 10,00).

o]
Let us consider what assumptions regarding the function T,
are necessary in writing (1.2). The term we are concerned.

2
with is the term %Egl. In obtaining (1.2) from (1.1) we

have made the assertion that
(1.3) eSO (TN de - T
0 Iy~ - Y

If T, is such that the order of integration and differenti-

ation can be interchanged we have
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By Leibnitz's Rule [3, p. 322], we can interchange the order

of integration and differentiation in this manner, if for

2
each ¢ > 0, Ty, %%l, and 33%% exist and are continuous

funcfions of y for y > 0. Thus the assumptions of continuity
of T; and its first and second partial derivatives with
respect to y, and the assumptions that T; and the second
partial of T, with respect to y are of exponential order,
allow us to write (1.3).

As a final example, we justify the following
transformation of a boundary ﬁondition.' Suppose we have .

the condition that

(1.4 %%% is a nonnegative decreasing function of y.

We now justify the result that (1.4) transforms into the
condition

(1.5) %%l is a nonnegative decreasing function of y.

Showing that (1.4) implies (1.5) is the same as showing that

(1.4) implies

o
%J { e'seTlde is a nonnegative decreasing function of

0
L/

Again utilizing Leibnitz's rule we can write




N

d Jw -s 6 jm -5 63T
I3 e T,de = e 214
vy ! 0 T

if we assume that T; and 33 are continuous functions of y
for y > 0 and 6 > 0, and that they are of exponential order.

Clearly
J e-seaT]ie
0 o

is nonnegative since %%l is nonnegative. It is al¥o"clear

that

J e .se——L (y+ayp,0)de <je se——-l- (w,e)de
0 0

for any increment Ay > 0 since %%l is a decreasing function

of y. Therefore %%l has the property that it is a nonnegative
decreasing function of y. '

Briefly, the Laplace transformation method of solving
a system of differential equations involves the following
steps. Application of the Laplace transformation to a
partial differential equation involving only one space
variable and one time variable, reduces the partial differ-
ential equation to an ordinary differential equation. The
equation thus derived is referred to as the "subsidiary
equation.'" The boundary conditions for the subsidiary
equation are obtained by applying the Laplace transformation
to the boundary conditions of the initial partial differ-

ential equations. By using standard methods of ordinary
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differential equations, the subsidiary equations are solved
using the transformed boundary conditions. The Laplace
traﬁsform of the solution of the problem is then known and

the problem is solved if an inversion of the transformed

o

solution can be made.

In practice the inverse Laplace transform of a
function.is usually obtained from a table of inverse Laplace
transforms. If the inverse of a function does not appear in
a table but the function can be expressed as the product of
two functions whose inverses do ‘appear in the table, the
following theorem is useful.

Theorem 1.4: "(Convolution Theorem) If

L' L{t(s)} = T(e) and L™ 1(g(s)} = G(s), then
L'l{f(S)g(S)} = ng(T)G(e‘T)dT.

If the trahsform t(s) does not appear in a table of
Laplace transforms, T can often be determined from t(s) by
using Theorem.l;l.

We state the following definitions of ‘functions
which will be used in the body of the thesis.

Definition 1.4: [1, p. 297] The function erf

defined by

—erf z =

-is called the error function.

Definition 1.5: [1, p. 297] The function erfc

defined by




- N N N N R B e e

erfc z = 'Jme_t‘dt =1 - -erf z
z

Alw

is called the complementary error function.

Definition 1.6: [1, p. 299]

n- n-2

i"erfc z = - i 1erfc z + 7% i erfc z (n=1,2,3,...)

z
n
where

2 _
. - -Z .
i lerfc z = e and i%erfc z = erfc z.

2
r
Definition 1.7: [1, p. 775] The functions Hn(x)

defined by [

where by [%] we mean the largest integer less than or equal

to % , are called Hermite polynomials.




CHAPTER II
STRAIGHT WIRE

We first consider the problem of obtaining the
temperature distribution in a thin skin to which a straight
wire has been attached. A heating rate Q is assumed to be
uniform over the surface and constant with time.

The following diagram pictorially describes the

physical situation.
Heating

L) s

2 N

Thin
Skin:

A Thickness S
R Properties
- . ] ) cl»bl’kl
Wire:

Radius T
Properties cCjp,p2,Ko

Figure 2.1.




10

Throughout this thesis the following notation will be used:

~

v is the angle measured from the wire.

X is the distance down .the wire from the
skin.

[ is the time. |

R is the radius of curvature of the skin.

T; (v, 0) is the temperature of the skin.

T,o(x,0) is the temperature of the wire.

Q is the heating rate per unit area of the
skin.
S is the skin thickness.
T ’ is the radius of the wire.
cy is the specific heat of the skin.
Cy is the specific heat of the wire.
- 01 is the density of the skin.
05 is the density of the wire;
k, is the thermal conductivity of the skin.
' | is the thermal conductivity of the wire.

al=—5l—- is the thermal diffusivity of the skin.

a2=%§b is the thermal diffusivity of. the wire.
2

The following assumptions are also made:

1. The thin skin is considered to have infinite
thermal conductivity in the thickness dimension.

2. There is no heat transfer from the rear side of

the skin except through the wire.
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3. The wire has infinite thermal conductivity in
the direction perpendicular to its axis.

4. The wire is assumed to be infinitely long and
heat transfer from the surface of the wire is neglected.

5. The thermal capacity of the material of the thin
skin adjacent to the junction is neglected. This is the
material énclosed within the radius r and of thickness S.

6. The heating rate Q is assumed to be uniform over
thé face and constant with time.

The differential equation that must be satisfied in
the skin is |

%g—l %é-%-a—'r- >0, 8 > 0.
This equation essentially describes the flow of heat in the
skin. The equation describing the linear flow of heat’in a
wire on assumption of no radiation is
%}.{g.l:%rz-é-’gz x >0, 8 > 0.
We thus have two differential equations that must be
satisfied.

Wé next present>a set of boundary conditions.
Assuming that our system is initially at a zero temperature
we have the condition |

T1(¥,0) = To(x,00 =0  y >0, x> 0.

Since the temperatures T,(0,6) and T,(0,s) are temperatures
at the same physical position we have T,(0,¢) = TZ(O,e) 6> 0.
As we move far enough down the wire, away from the skin, the

temperature approaches a constant value. This fact can be
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represented by the statement

2T,

5% > 0.

|
o
<D

(x » =,8)

Equating the heat lost from the skin to the heat drawn down

the wire we have
K, S2mr 211 _ (0,9) = -k,qr2 2L2(0, ) 6 > 0
12T SrRgy (O 2T ax M .

The cooling effect of the wire becomes less as we move away

from the wire. Thus the physical situation also dictates

that %%1 be a nonnegative decreasing function of y, y > 0.
The problem is thus one of solving the system of
equations
32T QR2 _ R23T,
(z.1) EI SR T
(v, 8, x > 0)
- 22T, 1 3T,
(2.2) 3—72 EY:
with the boundary conditions
(2.3)  Ty(y,0) = Tp(x,0) = 0:;
(2.4)  T;(0,8) = T,(0,0) ;
3T2 =0 - 0
(2-5) (X > m,e) = 0 ’ ) (IP, 6, X> )

9X

(2.6)  2k;S %%ﬁET (0,e) = -k, %%2(0,6) ;

(2.7) %%1 is a nonnegative decreasing function of y.

We now apply the Laplace transform to'(2.]) and (2.2).

(-]

Letting t, = fwe-seTl(w,e)de and t, = % e-SeTZ(x,e)de we
! ) ,

have
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d2t R 1 _ R? ,
(2.8) T92 + %—l—s‘ s T a (Stl - T1(1]),+0))
and
‘ dzt 1
Lé.g) ‘ Aa?c-z-l = a—z-(stz - Tz(X,'l‘O)).

Using boundary condition (2.3), equations (2.8) and (2.9)

simplify to

d2t1 QR2 1 _ R2.
(2.10) Z +_T<—l—§ g = ET sty
and
| d2t,_ 1-_.
(2.11) <z = EZST_Z.

Boundary conditions (2.4)-(2.7) on T; and T, transform into

the following boundary conditions on t; and t,

(2.12) tICO,S) = tz(O,S) ’
(2.13) %%2 +0 as X » o

dt dt ’
(2.14). 2,8 Trkgy (0,9) = ot F2(0,9)

(2.15) %%1 is a nonnegative decreasing function of y.

The general solution of (2.11) is

(2.16) t, = d,e*’8/%2 4 dze-x'szo‘2 .

Similarly the complete solution of (2.10) 1is

(2.17) t, = dgeRV/S7el 4 g o"R¥/STar : %2.

Differentiating (2.16) with respect to x and applying
boundary condition (2.13) forces the result d, = 0.

Thus we have

’
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(2.18) to = dze-x 5, ¢z,

Differentiating (2.17) with respect to ¥ and applying
boundary condition (2.15) yields the result d3 = 0.

Therefore

= dqe-Rlp s/a1 + Qop 1

(2.19) B T -5 52

Using (2.18) and (2.19) in (2.12) produces the equation

(2.20) 4+ %%% 5= 4

Boundary condition (2.14) implies that
(2.21) 2k;S ¥ dyRYS/ay = -K,1d,/57ap .

Solving (2.20) and (2.21) algebraically for d, and making

this substitution in (2.19) yields the result

P . “RivVS o~
_ . ajag 1 -RY/STer , g
(2.22) t i,ta s?e b oh,
where
N Q _ 2k,S _ kor
a; = —— , az = , and ag = .
c1p15 (a1 ¥ (a2)%
Upon inversion [1, p. 1026, Formula 29.3.86],'(2.22):becomes
- _ A - 2 -
(2.23) T, = - E 4o i4erfc w + a0 ,
where
Ry

A=a1a5,E=a3+a5, aﬁdw=m
‘ lvay




CHAPTER III
BENT WIRE

" In this chapter we evaluate the effects of thermal
resistance and extra capacity between the wire and the skin.
The extra capacity is taken into account by using a model
where the wire is fastened along the skin for some length.
As the thermal resistance and the length along which the
wire is connected to the skin are decreésed, the solution to
this model should approach the solution to the straight wire
model.

Extending our notation to encompass these added
concepts, we let Q represent 1 resistance between
the wire and the skin, and ¢ represent the length along
which the wire is attached to the skin.

The following diagram pictorially describes the

physical situation.

\

<:r’ Heating Rate Q

\

Thin Skin:

//,2}' Thickness S

Properties cj,p1,K)

Wire:
Radius T
Properties Cr,p2,K2 l

Figure 3.1. ' -L
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We first consider the case where there is no
resistance between the wire and the skin, but where the wire
is fastened along the skin for some distance. This is the
case © =0 and 2 # 0. .

The diffefential equations for this problem are
identical to the differential equations for the previous
problem iﬁ Chapter II. The boundary conditions are also the
same except for boundary condition (2.6). This condition
equates the heat drawn from the skin to the heat flowing
down the wire. Taking into account the "reservoir" effect
of the added length of wire, bbundary condition (2.6)

becomes N
Ky271S 2TL  (0,8) = Crp,mr22252(0,8) - k,qr22L2(0, )
1 HC 2P2 MR AT 2T Tax AT 0
Transforming, using boundary conditions, and proceeding as

in Chapter II we find that

a1a3e_Rw/s7u1* i} o-Ru/S7ay | gi

S

s2(ayv/s+agz+tas)

8.1 = %a% ’ a3 = Zk—]S " aL} C2p2r2, ’ and as = F_-Z;I:_ .
: Yoy Vag

Rewriting t; we have

e RVYS/a1 5 5 /5 + ajas . a1

(3.1) t]_ = -
s? a,/s + as + ag s?

The problem is then one of inverting t;. The first
term of t; can be inverted if it is expanded using partial

fractions. Rewriting part of the first term of (3.1) we
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have

aja,’/s * ajas _ éq BYs + 1
s2(a,vs + E) 37s2(/s + E/ay)

where

= = au
A ?135 and B as

Using the partial fraction expansion

BX+1=E+EZ+Ea+é4+e
XWX"'pj X X X X X+Dp

(3.1) becomeé

A a b c d e = -RyY/s/a; , a3
£ty = - —— (& + = 4+ 2, + 2+ e + =
1 ay (s s s% 52 s};E—) s2
ay
where
_ aﬁ(BE - ay) b = -a2(BE - a,)
B4 ’ E3
- h\rBE = aLL) Y 3 ay 3
c = —= e = and ¢ = -a
E2 S E

Using the relations [l1, p. 1026, Formulas 29.3.84, 29.3.86,

and 29.3.88], we have upon simplification

- -2
T, = - & e(izerfc o) + (- ABE = 3u) 5 a7y enu
1 T w2
. (2/_e_w A(BE - aq) + AaH(BE - a“))erfc ®
E2 E3
ABE _(=5)2/5w _E%e/a? E
+ (EE_— e la, e serfc ( T Yo + w) + aje ,
where o = Ry
2/&16




18

Next we consider the case where there is no capaci-
tance between the wire and the skin, but where there is a
resistance‘present. This is the case & =0 and @ # 0.

Again the differential equations are identical to
those of the straight wire problem. The boundary condition
that distinguishes this problem from the straight wire
problem ié boundary condition (2.4). This condition stated
that T;(0,8) = T,(0,8). The effect of a resistance bgtween
the skin and the wire is to restrict the flow of heat from
the skin to the wire and cause the temperature of the wire
to be less than if no resistance were present. More specifi-

cally, boundary condition (2.4) becomes in this case

T,(0,8) - T,(0,8) = ak;2rrS 3%%$7 (0,8) .

The solution of this case is analogous to the case

@ =0 and ¢ # 0 and we present here only the result that

. ‘ -2
T, = - % 4g(i2erfc w) + éLiiiil (2v/e7w) e @
E

+ [_ A(_E‘J_aﬂl_ 2,/—9-& - m_).i) erfc w
E2 E3

2EV/B. E2g E
+ (.‘L_\_(_‘}.Las)_z_ e( aza?)e((azas)Z)) erfc (Efé‘

a,ag * w)

where
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We now attack the general problem were both 2 and 2

are nonzero. The system of equations for this problem is

92T, R2 _ R% 3Ty.
(3.2) | + %Tg -2

(v, 8, x > 0)

(3.3) 3 .

subject to the boundary conditions:

(3.4) Ty (9,0) = T,o(x,0) = 0 ;

) 3T1(0,06)
(3.5) TI(O, 6) TZ(O,B) Qk 27rS —a—%—m-—
(5.6) Blo(x » w, 0) = 0 ;

(3.7) k]_ZTrrS -é_%lgﬁi_ (0,6) = Czpzﬂrzi _2%2(0,6) - kz’n'I'Z%%Z(O,e);

(3.8) 3—115 a nonnegative decreasing function of y.
L*I

Upon transformation and use of boundary condition

(3.4), (3.2) and (3.3) become

d2t1 % 1 _ 2
(3.9) + o -&- 1
and
d2t, _ 1
(3.10) Xz = Ezstz

Transforming boundary conditions (3.5)-(3.8) and again using
boundary condition (3.4) we obtain the following set of

transformed boundary conditions:

(3.11)  t,(0,s) - t,(0,s) lezlzé dtl(O, )

.
14
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(3.12) %%2 >0 as x » » ;
(3.13) E%Lﬁ %%1(0,5) = Cappr2sty(0,s) - kpr %%2(0,5) ;

(3.14) %%1 is a nonnegative decreasing function of y.

As was seen in Chapter II, solutions for (3.9) and

(3.10) upon application of boundary conditions (3.12) and

(3.14) are

(3.15) ty = dze- S: @2X
and

(3.16) ty = dye RVS70r , Qoa 1

1S s2
where d, and d, are constants that must be evaluatéd using

conditions (3.11) and (3.13). From condition (3.11) we have

(3.17) d, + Ll - a, = gkgzers (G005
1 a

From condition (3.13)
(3.18) 2kS (-d4vs7ay) = cyporasd, - k,r(-d,/574q,)
Solving (3.17) and (3.18) algebraically for d, we obtain

4. = 1 ajayys + ajas
v 5T 32 ‘ >
aays + (ay*tajzag)vs + (az+ag)

where

_ k12918 _ 2k;S

a, = Qaé » 8 T/, a3 = ’
: 1 Vo Yoy

‘ kor

a, = Cpppre and ag = =2

Thus from (3.16)
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A B/s +1 -Ry |
t1 = - 2l ' e VTS o+ gé )
Cs + DV/s + E
where
A=a1a5,B=—%g,C=a2a4#0,'
D = ay+asas , and E = asz+ as
Inverting t; we obtain
Ty o= LNty = - BB rheyy - 207 he,) ¢ age
where ,
o~ RYYSTay
Py = —
s2(s + D/CV/s + E/C)
and
o RUVSTay
P, =

s2(s + D/CV/s + E/C)
Using the quadratic formula P; and P, may be rewritten as

e'Rst; al

(3.19) P, =
' s%(s% + G)(s% + H)

and
(3.20) P, = e R¥/5 /e

| 2 sz(s} + G)(s% + H)
wherg
(3.21) G=D2/CH /Dz;c - 4E/C
and
(3.22) - ME - /DT/CE - 3BT

We now consider three possible cases for values of

G and H. The first case we consider will be the case where
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G and H are real or complex but unequal. The second case
presented assumes that G and H are complex but unequal.
Finally, in the third case, we solve the problem where G and
H are assumed cqual.
Case I: G and H are real or complex, and unequal.
Using partial fractions we obtain

1 a9 + @10

' =—+—-7+-— ’
sT(sT4G) (sT+H) s? T Ten) | (sTeH)

where
g = 1 _ -(GH) . = -(GH) + (G+HP
6 ’ R = ’
T E (GH) 3
39 =_.__:_L____ and alo =__._._..}____ .
-G3(H-G) -H3(G-H)

Using the above partial fraction expansion, P, can be
inverted using the inverse transforms referred to earlier in
ghe chapter [1, p. 1026, Formulas 29.3.84, 29.3.86, and
29.3.88]. Noting that ag + ag + a;o = 0 we obtain the
result

- 2
L l{Pl} = ag(2v8/re " - 2V/8 w erfc w) + ay erfc w

- ag GeG(2/§m+Ge)erfc (GVe + w)
- ag HeH(2/§w+He)erfc (H/e + w) ,
where again w = Rv_ |
2/a19

Again using partial fractions we obtain

1
s2(57+G) (sZ+H)

=2
s

.g airs . 214 a1s5 ., __ 216

ST (sTeG)  (sTeH)

11
2
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where
. _ 1 _ -(G+H) _
a11 T gg T @6 » 812 T ——= = a7
(GH) 2
< _ =(GH)+(G+H) 2 _ _ 2(G+H) (GH) - (G+H)3
213 = = ag , a1y = >
(GH) 3 (GH)*
a =;=-%9,anda = 1 .--%10.
G"*(H-G) H%(G-H)

Using the above partial fraction expansion, P, can be
inverted using the same inverse transforms used above for

inverting P;. Noting that a,, + a . + a,, = 0 we have

- -2 _
L 1{Pz} = acdo(i2rfc ) + a7(2V6/me ¥ - 2V/6uw erfc w)
+ agerfc o - a15GeG(2¢€@+Ge)erfc (GYe + w)
- alsHeH(2/5b+He)erfc (HVE + w).
Since
Ty= - 2L e - LR,y age

we have upon combining similar terms

(3.23) T, % 4e(i%erfc w) + 2 % Ye/n(D/E - B)e""2

-p2
. A:(BD . CE-D% _ 2/8w(B - D/B) erfc w

E V' E g2
+ E%A (BG - 1)eG(2}/e w+Ge)erfc (GVe + w)
* g%A(BH - 1)eHC2/§a+He)erfc (HV8 + w)
+ aé
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Because of_the partial fraction expansion used, the above
formula holds only when G # H.

Certain values of the original physical parameters
result in complex values for G and H. If G and H are complex,
the 4th and 5th terms of (3.23) are also complex. It may
appear strange that an equation for a physical quantity such
as témperéture would involve complex terms. One mighf even
begin to doubf the validity of the solution. This apparent
irreguiarity is explained ubon closer examination 6frthe
terms in (3.23). Using properties of the function erfc, it
can be shown that the 4th and 5th terms of (3.23) are complex
conjugates. Summing complex conjugates results in a real
number and our worry about obtaining complex temperatures
from (3.23) is now removed.

In the event that G and H are complex, equation (3.23)
does not readily lend itself to numerical calculation for
T,. The‘following alternate solution may be of assistance
when G and H are complex.

Case II: G and H are complex and different.

Our equation for T; is

(3.24) 1= -2 ey A,y v oae
where

2/EE
(3.25) Py = & =

s%(s + D/C/s + E/C)
and L

, RATIYOR

(3.26) P2 =

s?(s + D/C/s + E/C)
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Let

(3.27) o(s) = —*
s + D/CY/s + E/C

Rather than factoring the denominator of (3.27) using the
quadratic formula as was done in obtaining (3.19) and (3.20),

we rewrite (3.27) as follows

¢(s) = 1 = 1
s + D/CY¥s + E/C

D/CVs )'

(s + E/Q) (1 + $=%70).,...

The Maclaurin expansion of T—%—i converges absolutely if

x| < 1
Thus

1 T30, D/C/E
(3.28) = J(-1)

L+ D/CYS n=0 &E7c)

s + E/C :

will converge absolutely if CD{C/? l 1
l -~

+ E/C|
Since we have assumed that G and H are complex, (3.21) and
(3.22) imply that (D/C)2 - 4E/C < 0. C, D, and E are

nonnegative, (they are combinations of nonnegative physical

parameters), so (D/C)2 - 4E/C < 0 implies

(3.29) D (1
2VEC
The maximum value of
D/CVs
(3.30) 51%f§%nfl
is attaihed when

2/5(s + E/C) (s + E/C)2
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Solving (3.31) algebraically for s we find that s = E/C.

Therefore the maximum value of (3.30) is

- D/CYE/C _ D

(3.32) TE/C = T

< 1 by (3.29)

Thus (3.28) converges absolutely

From (3.28)
- (3.33)
v w n/2
o(s) = L —— = J(-p/O)" =2 T
(s + B/Q) (1 + 2EEy 20 (s + B/C)
Using partial fractions
(3.34)
1 _b1, by, b by + bes¥
sZ(s + D/C/5 + E/C) 53' s % (s + D/C/S + E/C)

where b,,..., bg are constants. Applying (3.33) and (3.34),

(3.25) becomes

-2/ewvs (b b b
3.35 P, = ¢ D14 D2 4+ 0
( ) 1 (Sé S s;
© ' n/2
+ (bytbgsD)  T(-D/CO)P —=
S e nzo (s + E/C)n+1)
Similarly
(3.36) I R T
s s

Sn/Z,
(s + g/c)*1

+ (cotcgsD Zé-D/C)n

n

)

where ¢;,..., Cg are constants obtained from the partial
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fraction expansion of (3.26).

Recalling (3.24), the equation for T;, let us

consider
-1.A: _ -1 AB A L.
(3.37) L 7HQ¥) = L (- = P} - & P3}
where
(3.38) P¥ = 6’2/5w/5(21 . 22 , bs
S S
and
(3.39) Py = e 2V00/S(C1 | 2, &3 =
s2 s% S s
Upon simplification
(3.40)
- 2
L7HQs} = - § 4e(i%erfc w) + 2 & /G7T(D/E - B)e™?

' 2
+ % (Eg + % - 22 + 2/6w(B - D/E)}erfc w

A 1 BD? 2CD D3y -w?
+E-2—(BC'~T3"—E )e

Y

We observe that the first three terms of (3.40) correspond
exactly with the first three terms of (3.23). This was to
be expected because of the similarity of the partial frac-
tion expansions used. It does however serve as a check of
the previous result.

We next investigate the terms that were omitted in

(3.40). These terms were
-2 1 he, - PiY ana - £ LR, - PR

From (3.35), (3.36), (3.38), and (3.39)
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(3.41)
— ‘ ® 2 ..
P, - P} = e-ZJEQ/S((bu + bsvs) J(-D/C)"—2 +i)
| n=0 (s + E/C)"
and
(3.42) ,
' ’ oo o n,2
P, - PF = e 2S¢, 4 c/E) T(-D/C)R—S
2T [les + co’8) 1§ (s + B/C)™*1

Using the absolute convergence of (3.28) we combine (3.41)

and (3.42) and rearrange terms to obtain

(3.43)
Lhresr = - 2B 2y e - A 2, - B
— o /2
= A ((Bb, + cs) L1 em2Yours SYiok s~
co e ned (s + /)™

-1} _-2V8w/s g n _s(@*1)/2

- +(Bbs + cg) L e -D/C)
2T g neh (s + E/Q)P*1

N
The conditions of Theorem 1.2 are satisfied, therefore (3.43)

can be inverted termwise. The terms of Qg are of the form

(3.44) 1 sn/ze-Z/Ew/E
(s + E/C)n+l
or
1 (n+1) /2 -2V8uwYs
3.45 S e .
(3.45) (s + E/C)"*1

Using [1, p. 1022, Formula 29.3.10] and [1, p. 1026, Formula
29.3.87] (3.44) and (3.45) can be inverted using convolution

Theorem 1.4. The result for the inverse of (3.44) is
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(3.46) |
0oy (B/O (00 - (R%y%)/(4ay )
J oy n+1/_( A% 2) 72 Hoyp ((Ry)/(2/a70) )dr

0
(n=0,1,2,...)

A similar result is obtained for the inverse of (3.45). From
(3.46) the first part of (3.43) becomes, neglecting a con-
stant coefficient,

(3.47)

2 2
-(E/C)(o-1) - (R v )/(4ay1)
(- r) e 1
BIEYOk JO n+1/_( Sares

IIMB

]

X H_ 1 ((Re)/(2Va7) dr). S (n=0,1,2,...)

If the series in (3.47) can be shown to be uniformly conver-
gent, for 1 in some interval (0,6;), the order of integration
and summation can be interchanged for ©® < 6y,

Using the inequality‘[l, p.- 787, Formula 22.14.17]
(3.48) H ()] < X220/ 2 5T K - 1.086435
the desired uniform convergence can be obtained if 6y is
sufficiently small. For example, if 8¢ < (CRy)/(DVZay), the.
integrand in (3.47) converges uniformly on the interval
[0,60].°

In showing the above uniform convergence, a non-
negative series of constants was shown to be a bound for
(3.47). This convergent series and a similar one for the
second part of (3.43) could be used in determining how many
terms of‘(3.43) need be compute& to obtain T; within a given

margin of error.
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Finally we consider the case where G and H are assumed equal.
Case III: G and H are equal.

Our equation for T, is again

(3.49) 7= - ALty - S eyt oy,
where
b e—vas}al
1- =
s%(sf + G)(s% + H)
and
-Ryvs/ay
_ e
P, =

s2(s7 + G)(sZ + H)

The equations for G and H are

g = D/C + YDZ/CZ -"4E/C
2

and

_ D/C - VD¥JCZ - 4EJC
- :

Assuming G = H we have G = H = %ﬁ .

Using partial fractions

1 _ 1
s%(s% + G)(s% + H) SQTS% + G)2

- @5 2@

Vi

L% 1 1.3 1 1.4 1
+3(3) g - () Y] -3 (%)

and

1 1
s2(sT + G)(s¥ + H) s2(s? + G)2
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Therefore _
1 1.2 -1|e-R¥/sTa . A -Ry/STaT
L l{Pl} = (}J L lj)e 1 —2[£)3L 1ye™ 1
G S; G 5
14 -1 e'RwVS?a1 13 -1 e-R¢/§7E?
D B2 -l < 2SE
syt
¢ (sT+6 \
and B
- : _q1tl o -RUYs7ay | -RyV/s/a1
R0 T S [ e IMAEN QP FALS A |- ol
| » 5 —
1b .1\ e"RUYS/a1 15 -1} e RVY/STaT
+(1)'+ _1 e'Rw'S/al +4(1)b L_l e"Rl])VS/al
¢ (sT+ 2y °C (sT + 6)

The only inversion above that gives any trouble is

L_l e-vas;al
(sE + G)?

Using Theorem 1.4 we can invert this term by writing

-1 e'RW/S;dl -1 e'R¢VS/a1 1
L = L
(sT + G)2 (sT + G) (s% + Q)

and using (1, p. 1023, Formula 29.3.37] and [1, p. 1026,

Formula 29.3.88] to get




_l e'RwVS;al JG( 1
0

3.50) L =
( ) Eg;r:—agz

x (L o (R%p2)/(4ay )

-~ Ge
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—_— - Ger(e-T)erfc(G/e-T))
Vn(e-1)

GRy/Ya1,6% g rec(GyT + —R))de.
ZVO.IT

Recalling (3.49), the equation for T,, we have using [1,

p. 1026, Formulas 29.3.84,

29.3.86, and 29.3.88] that

(3.51)
2
T, = - £ (%) 4e(i2erfc o)
A 1,22 < w2
+ T (C) (G - B) (2 g/ me - 2/ouw erfc w)
A (1,3 3 A 1% 4 1 -w?
+ (%) (2B - %) erfc o + (-3B + =) e
T (g o ¢t (3 ¢ =
-2/8w/s
A (1.8 1.,-1)e
+ = (&) (B - %)L *—;T————
+ A (;Jq(3B - i) ( ¥ﬁ e u? el (2/0u*CGo) o pe (GYe + w)),

where [, = Ry

We now make a comparison of some of the solutions

obtained in this chapter.
Q@ =0 and 2 # 0 was

- - A

(3.52) T) E

40 (i%erfc

Our solution to the problem where

) + (FABE - aw) 557 Tk

EZ

erfc w

+ (ZJEN A(BE - ay) , Aay(BE - ag))

E2

(ABE e(a%) zfe?weEZe/a%)

E3

erfc (E§ Ye+w) + a6
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Our solution to the problem where &= 0 and @ # 0 was

(3.53) T; = % 4o (i%erfc w) + éii%éil (2Ve/n) e @
‘ E

+-(; Aazas) , /5, ;:éﬂ&&iélfg erfc w

E2 E?
. » (2EVBuwy [ E%8 B
+ (éiéliil e( azas)ekﬁkas)é))erfc (a§:§ * o)

+ a6

To compare these two solutions we will need to look at some
of the constant terms that appear in them. For convenience

we list some of these constants below.

- Qa = Qk]ZWTS - Zk]S
aj T(TSL’aZ sy 4 -

3 ’
Vo Ya-
1 1
kor »
a“ = CszI’Q, and a5 = =2
VTR
A = aja B = 2t C = a,a
145 » 55 ’ 2%L

w]
I

= a,t+tajsag, and E = ag+ag

Observing that 0 implies that a, = 0, we see that ¢ = 0

D
]

implies that D = a, and C = 0. We also observe that g = 0

implies that a, 0 and that therefore g = 0 implies that
B=C=20and D= a,as. The above observations allow us to
write one equation for T, for both (3.52) and (3.53). This

equation 1is
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2
(3.54) T,

A . A D -
E 4e(i%erfc w) + 2 g’ 8 7w[E - B)e™®

_ . N2
+ % (EQ + CE - D7 2V/6w(B - %) erfc w

EZ

A(D - BE)D_(E/D) (2/8w + & 6)
E3 '

erfc(%/@ +u) + a6

This equation is identical to equation (3.23), the equation
representing the solution to the:general bent wire problem

where G # H, except for the second to the last term.




CHAPTER 1V
NONDIMENSIONALIZED SOLUTION

The solution of problemé in conduction of heat can
always be expressed in terms of a number of dimensionless
quantities. It is aiways desirable to make this changé
before making numerical computations ffom the solutions.

The solutions obtained in previous chapters were
found without nondimensionalyzing the equations. We can
however obtain solutions involving dimensionless parameters
by making appropriate substitutions. (A more direct method
of obtaining dimensionless parameters in the solution would
have been to nondimensionalize before solving the equations).

We now proceed to nondimensionalize (3.23), the

~general solution to the bent wire problem with G # H.

"As the solution stands before nondimensionalization,
we have T; in units of temperature and 6 in units of time.
We would like to introduce new dimensionless parameters to
represent the magnitude of T; and 6. The initial differen-
tial equations will indicate substitutions leading to
dimensionless parameters. Since we are interested in only
T,, the temperature on the skin, we need only look at the

first equation for the bent wire problem. This equation is

35
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32T, , QRZ _ RZ 3T,

(4.1) " k;S = a; 36

We observe that multiplying both sides of (4.1) by LSES

will reduce it to an expression equating two numbers without

units, namely

(4.2) mﬂlq.l:.k_l_s.‘ﬂl
QR2 3y2 Qay 36

e d

A desirable substitution for T; can now be seen to be
_ T1QR2 . . .
T, = 5 where T; is our new dimensionless parameter.

Substituting T1 for Ti1 in the right member of (4.2) we

obtain

k1S 9T; 3T,
Qui 06 Qa; 9T, 96
k1S QR? 3T,
Qa1 k1S 96

- R% a7,

o] 96
and the desirable substitution for o can be seen to be

2
g = R% where is our new dimensionless time parameter.
ol ’

Solving for T, in terms of T, we obtain 7, = kl% T,.
QR

Thus if we multiply the solution for T, by the factor

2
X3S ana replace ¢ by %Ti » we will be able to obtain a
QR2 | ‘

nondimensionalized solution. Our solutions for T; was
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(4.3) T, = - B as(iertc w) + 2 & VE7R(D/E - BYe™Y’

A (BD CE-D?
r g+

“E > + z/Ew(B-D/E)j erfc o

* E%é (BG - l)eG(2/€w+Ge)erfc (GYe + w)

+ i&:jé (BH - 1) (280 HO) e (/5 4y

+ a;e

We first note that w = —X¥ _ = ¥ g already
2va19 2/5

dimensionless. Our task is thus to nondimensionalize G, H,

%, g, B, %, and % . The dimensionless parameters for G and

H can be obtained directly from the terms erfc (GY8 + w)

and erfc (HY/e + w) respectively using the substitution

R2¢

a1

6 =

Designating the corresponding dimensionless

parameters with an asterisk, we find that

G* = SB_ and H* = HR
a1 Yoy
To obtain the other dimensionless parameters we
. _
multiply T; by kS and replace 6 by R7¢ Since T; is
QRZ al
nondimensional, El% times any term in the right member of
QR

(4.3) has to be nondimensional. We use this fact to find

the dimensionles; form§ of %, B,%,' %, and'% .




