38 research outputs found

    The Influence of Maleation on Polymer Adsorption and Fixation, Wood Surface Wettability, and Interfacial Bonding Strength in Wood-PVC Composites1

    Get PDF
    The influence of maleation on polymer adsorption and fixation, surface wettability of maleated wood specimens, and interfacial bonding strength of wood-PVC composites was investigated in this study. Two maleated polypropylenes (MAPPs), Epolene E-43 and Epolene G-3015, were used to treat yellow-poplar veneer samples. Retention of coupling agent, graft rate, graft efficiency, static contact angle on treated samples, and shear strength of resultant wood-PVC laminates manufactured under hot-pressing were measured. It was shown that the relationship among graft rate, coupling agent retention, and treating solution concentration for MAPP-treated wood specimens followed a three-dimensional paraboloid model. Graft efficiency decreased with the increase of concentration and retention. The relationship between retention and concentration was linear for G-3015 and polynomial for E-43. Maleation treatment greatly improved the compatibility and interfacial adhesion. The veneer samples treated with these two MAPPs presented different wetting behaviors. For G-3015-treated samples, measured contact angles varied from 115° to 130° independent of retention, graft rate, and wetting time. For E-43-treated samples, retention, graft rate, and wetting time had a significant influence on the contact angle. Compared with controls made of untreated wood and PVC, shear strength of the maleated wood-PVC laminates increased over 20% on average. There was no direct correlation between measured contact angle and shear strength. Extractives had negative effects on retention. However, they did not significantly influence contact angles and interfacial bonding strength. Monolayer models were proposed to illustrate the bonding structure at the interface

    Rheological properties of asphalt binder modified with recycled asphalt materials and light-activated self-healing polymers

    Get PDF
    Ultraviolet (UV), light-activated, self-healing polymers are an emerging technology that was proposed to enhance the elastic behavior of asphalt binder, while improving its self-healing properties. The objective of this study was to evaluate the effects of self-healing polymer on the rheological properties of binder blends prepared with or without recycled asphalt materials. Binder blends were prepared with two different binders (PG 67-22 and PG 70-22M), with or without recycled asphalt materials, and 5% self-healing polymer (Oxetane-substituted Chitosan-Polyurethane). High-Pressure Gel Permeation Chromatography (HP-GPC) results showed an increase in High Molecular Weight (HMW) components in the binder with an increase in stiffness through the addition of recycled materials. A further increase was observed with the addition of self-healing polymer. Fourier Transform Infrared Spectroscopy (FTIR) confirmed High-Pressure Gel Permeation Chromatography (HP-GPC) results with an increase in the carbonyl index. Furthermore, the addition of recycled materials led to an increase in the high-temperature grade and the low-temperature grade of the binder blends, while the self-healing polymer did not have a significant effect on the PG-grade. Overall, the addition of self-healing polymer led to an increase in stiffness and an improvement in the rutting performance, while it did not have a positive effect on low-temperature cracking performance. For unmodified binder (PG 67-22), self-healing polymer incorporation improved the elastic and fatigue cracking properties of the binder. However, when it was added to a polymer-modified binder (PG 70-22M) and/or binder blends containing recycled asphalt materials, the potential of this material was low to negative on the low temperature and fatigue cracking performances

    Laboratory Testing of Self-Healing Polymer Modified Asphalt Mixtures Containing Recycled Asphalt Materials (RAP/RAS)

    Get PDF
    The objective of this study was to evaluate the efficiency of an innovative light-induced self-healing polymers in enhancing the durability of asphalt mixtures and improving its self-healing properties. Mixtures were prepared using two different binders, with and without recycled materials, and self-healing polymer. Results showed that the addition of recycled asphalt material to mixtures prepared with an unmodified binder negatively affected the healing recovery at room temperature. Furthermore, Self-healing properties of the mixtures were improved by increasing the healing temperature. The addition of 5% self-healing polymer to the control mixture, followed by UV light exposure resulted in an increase in self-healing properties of the mixtures prepared with PG 67-22 binder. Semi-Circular Bending (SCB) test results showed that the incorporation of self-healing polymer and 48 h of UV light exposure improved the cracking resistance. Loaded-Wheel Test (LWT) results showed that the self-healing polymer caused an increase in the rut depth of the samples prepared with an unmodified binder. However, the final rut depth was less than the acceptable rutting performance. Thermal-Stress Restrained Specimen Test (TSRST) test results showed that self-healing polymer improved the low temperature cracking performance of the mixtures

    Surface and Interfacial Characterization of Wood-PVC Composites: Thermal and Dynamic Mechanical Properties

    Get PDF
    Maleation significantly influenced thermal and dynamic mechanical properties of resultant wood-PVC composites. Experimental results indicated that storage modulus (E') and complex modulus (E*) increased with increase of maleated polypropylene (MAPP) retention at low MAPP retention for both E-43 and G-3015, but leveled off or decreased at high MAPP retention. However, tanδ was independent of MAPP retention. Interfacial bonding strength was related to these moduli at low MAPP retention levels, but the correlation between interfacial bonding strength and moduli was not so significant at high MAPP retention. Compared with wood, PVC, and untreated composites, maleated wood-PVC composites had significant shifts in most DMA, TGA, and DSC spectra due to chemical coupling by MAPP at the interface

    Biocomposite films prepared from ionic liquid solutions of chitosan and cellulose

    No full text
    Blends of chitosan and cellulose were successfully produced using 1-butyl-3-methylimidazolium acetate (BMIMAc) as solvent media. Films were prepared from the blends by manually spreading the solution on a flat surface and precipitating the polymers in a mixture of methanol and water. To prevent the shrinkage of films, most of the absorbed water was removed by freeze drying under vacuum. Films prepared from the polymeric solutions were investigated by means of FT-IR, TGA, X-ray diffraction and SEM measurements. The shifting of the bands corresponding to -NH and CO groups of chitosan (FT-IR), the absence of the diffraction peaks at 2θ=10.7 and 14.9° (XRD), the increased E for thermal decomposition for all the polymeric blends (MTGA), and the presence of an apparent homogeneous structure with no phase separation of the two polymers (SEM) provide evidence for the miscibility between chitosan and cellulose in the solid state

    Gelation of Textile Dye Solution Treated with Fish Scales

    No full text
    In the present article, the commercial value of fish scales (FS), one of the most discarded fish wastes, has been identified by discovering their gelation capability. Fish scales of different physical forms were applied for the removal of dyes (acid red 1 (AR1), acid blue 45 (AB45), and acid yellow 127 (AY127)) from textile dye solution by absorption process. An astounding phenomenon, gelation of the treated solution, was noticed when it was aged for a certain period. The absorption of dye by FS was confirmed and quantified by FT-IR and UV-visible spectroscopy analyses, respectively. Process optimization revealed that pristine FS showed better gelation efficacy compared to pulverized FS. The gelation process was successful only when the dye solution contained acid and salt. As most of the textile effluents contain acids and salts in the discarded dye solution, this gelation process implies an obvious indication of the saving process and chemical cost in textile waste treatment. The jellified wastewater was characterized by exploring the rheological properties. Based on these analyses, potential application areas have been discussed
    corecore