29 research outputs found

    Implantation of Ferumoxides Labeled Human Mesenchymal Stem Cells in Cartilage Defects

    Get PDF
    The field of tissue engineering integrates the principles of engineering, cell biology and medicine towards the regeneration of specific cells and functional tissue. Matrix associated stem cell implants (MASI) aim to regenerate cartilage defects due to arthritic or traumatic joint injuries. Adult mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the chondrogenic lineage and have shown promising results for cell-based articular cartilage repair technologies. Autologous MSCs can be isolated from a variety of tissues, can be expanded in cell cultures without losing their differentiation potential, and have demonstrated chondrogenic differentiation in vitro and in vivo1, 2

    Restoring the Patient’s Pre-Arthritic Posterior Slope Is the Correct Target for Maximizing Internal Tibial Rotation When Implanting a PCL Retaining TKA with Calipered Kinematic Alignment

    No full text
    Introduction: The calipered kinematically-aligned (KA) total knee arthroplasty (TKA) strives to restore the patient’s individual pre-arthritic (i.e., native) posterior tibial slope when retaining the posterior cruciate ligament (PCL). Deviations from the patient’s individual pre-arthritic posterior slope tighten and slacken the PCL in flexion that drives tibial rotation, and such a change might compromise passive internal tibial rotation and coupled patellofemoral kinematics. Methods: Twenty-one patients were treated with a calipered KA TKA and a PCL retaining implant with a medial ball-in-socket and a lateral flat articular insert conformity that mimics the native (i.e., healthy) knee. The slope of the tibial resection was set parallel to the medial joint line by adjusting the plane of an angel wing inserted in the tibial guide. Three trial inserts that matched and deviated 2°> and 2°< from the patient’s pre-arthritic slope were 3D printed with goniometric markings. The goniometer measured the orientation of the tibia (i.e., trial insert) relative to the femoral component. Results: There was no difference between the radiographic preoperative and postoperative tibial slope (0.7 ± 3.2°, NS). From extension to 90° flexion, the mean passive internal tibial rotation with the pre-arthritic slope insert of 19° was greater than the 15° for the 2°> slope (p < 0.000), and 15° for the 2°< slope (p < 0.000). Discussion: When performing a calipered KA TKA with PCL retention, the correct target for setting the tibial component is the patient’s individual pre-arthritic slope within a tolerance of ±2°, as this target resulted in a 15–19° range of internal tibial rotation that is comparable to the 15–18° range reported for the native knee from extension to 90° flexion

    A TKA Insert with A Lateral Flat Articular Surface Maximizes External and Internal Tibial Orientations without Anterior Lift-Off Relative to Low- and Ultracongruent Surfaces.

    No full text
    Background: In total knee arthroplasty (TKA), inserts can have different levels of medial and lateral congruency determined by the acuteness of the upslopes of the anterior and posterior articular surfaces. The present study evaluated an insert with different levels of lateral congruency and a medial ball-in-socket congruency to test the hypothesis that a lateral flat (F) insert maximizes external tibial orientation at extension and internal orientation at 90° flexion and lowers the incidence of anterior lift-off relative to low-congruent (LC) and ultracongruent (UC) lateral inserts. Methods: Two surgeons treated 23 patients with unrestricted caliper-verified kinematic alignment (KA) and posterior cruciate ligament (PCL) retention. They randomly trialed inserts with a medial radial dial that functioned as a built-in goniometer by measuring the tibial orientation relative to a sagittal line on the femoral trial component. Anterior lift-off of the insert from the baseplate indicated PCL tightness. Results: The F insert’s mean of 9° of external tibial orientation was higher than that of the LC (5°, p < 0.0001) and UC inserts (2°, p < 0.0001). The −13° of internal tibial orientation at 90° flexion was higher than that of the LC (−9°, p < 0.0001) and UC inserts (−7°, p < 0.0001). The 0% incidence of anterior lift-off was less than that of the LC (26%) and UC inserts (57%) (p < 0.0001). Conclusions: Surgeons and implant manufacturers should know that adding congruency to the lateral articular surface limits external tibial orientation in extension and internal tibial orientation at 90° flexion and overtightens the PCL. These rotational limitations and flexion space tightness can adversely affect patellofemoral tracking and knee flexion

    A TKA Insert with A Lateral Flat Articular Surface Maximizes External and Internal Tibial Orientations without Anterior Lift-Off Relative to Low- and Ultracongruent Surfaces.

    No full text
    BackgroundIn total knee arthroplasty (TKA), inserts can have different levels of medial and lateral congruency determined by the acuteness of the upslopes of the anterior and posterior articular surfaces. The present study evaluated an insert with different levels of lateral congruency and a medial ball-in-socket congruency to test the hypothesis that a lateral flat (F) insert maximizes external tibial orientation at extension and internal orientation at 90° flexion and lowers the incidence of anterior lift-off relative to low-congruent (LC) and ultracongruent (UC) lateral inserts.MethodsTwo surgeons treated 23 patients with unrestricted caliper-verified kinematic alignment (KA) and posterior cruciate ligament (PCL) retention. They randomly trialed inserts with a medial radial dial that functioned as a built-in goniometer by measuring the tibial orientation relative to a sagittal line on the femoral trial component. Anterior lift-off of the insert from the baseplate indicated PCL tightness.ResultsThe F insert's mean of 9° of external tibial orientation was higher than that of the LC (5°, p < 0.0001) and UC inserts (2°, p < 0.0001). The -13° of internal tibial orientation at 90° flexion was higher than that of the LC (-9°, p < 0.0001) and UC inserts (-7°, p < 0.0001). The 0% incidence of anterior lift-off was less than that of the LC (26%) and UC inserts (57%) (p < 0.0001).ConclusionsSurgeons and implant manufacturers should know that adding congruency to the lateral articular surface limits external tibial orientation in extension and internal tibial orientation at 90° flexion and overtightens the PCL. These rotational limitations and flexion space tightness can adversely affect patellofemoral tracking and knee flexion

    Measurement of tibial orientation helps select the optimal insert thickness to personalize PCL tension in a medial ball-in-socket TKA

    No full text
    As the conformity of a medial ball-in-socket total knee arthroplasty (TKA) provides intrinsic anterior-posterior (A-P) stability, surgeons cannot rely on the manual examination of sagittal laxity to identify the optimal insert thickness. Instead, the present study determined whether measuring tibial axial orientation in extension and 90° flexion with an insert goniometer could identify the optimal thickness that, when implanted, provides high postoperative function. In twenty-two patients that underwent unrestricted caliper-verified kinematic alignment (KA) with a PCL retaining implant, two surgeons measured tibial orientation in extension and 90° flexion with 10, 11, 12, and 13 mm thick insert goniometers. Each TKA had one insert thickness that restored either the maximum external tibial orientation in extension, the maximum internal tibial orientation at 90° flexion, or both relative to 1 mm thinner and thicker inserts. In addition, the 6-month median [interquartile range] Forgotten Joint Score of 73 (54–87) and Oxford Knee Score of 42 (38–45) indicated high satisfaction and function. In conclusion, surgeons using a medial ball-in-socket TKA design can measure external tibial orientation in extension and internal tibial orientation at 90° flexion with an insert goniometer. Furthermore, implanting an insert with the thickness that provided the maximum orientation values resulted in high postoperative function, thereby personalizing PCL tension

    A TKA Insert with A Lateral Flat Articular Surface Maximizes External and Internal Tibial Orientations without Anterior Lift-Off Relative to Low- and Ultracongruent Surfaces

    No full text
    Background: In total knee arthroplasty (TKA), inserts can have different levels of medial and lateral congruency determined by the acuteness of the upslopes of the anterior and posterior articular surfaces. The present study evaluated an insert with different levels of lateral congruency and a medial ball-in-socket congruency to test the hypothesis that a lateral flat (F) insert maximizes external tibial orientation at extension and internal orientation at 90° flexion and lowers the incidence of anterior lift-off relative to low-congruent (LC) and ultracongruent (UC) lateral inserts. Methods: Two surgeons treated 23 patients with unrestricted caliper-verified kinematic alignment (KA) and posterior cruciate ligament (PCL) retention. They randomly trialed inserts with a medial radial dial that functioned as a built-in goniometer by measuring the tibial orientation relative to a sagittal line on the femoral trial component. Anterior lift-off of the insert from the baseplate indicated PCL tightness. Results: The F insert’s mean of 9° of external tibial orientation was higher than that of the LC (5°, p < 0.0001) and UC inserts (2°, p < 0.0001). The −13° of internal tibial orientation at 90° flexion was higher than that of the LC (−9°, p < 0.0001) and UC inserts (−7°, p < 0.0001). The 0% incidence of anterior lift-off was less than that of the LC (26%) and UC inserts (57%) (p < 0.0001). Conclusions: Surgeons and implant manufacturers should know that adding congruency to the lateral articular surface limits external tibial orientation in extension and internal tibial orientation at 90° flexion and overtightens the PCL. These rotational limitations and flexion space tightness can adversely affect patellofemoral tracking and knee flexion

    Negligible effect of surgeon experience on the accuracy and time to perform unrestricted caliper verified kinematically aligned TKA with manual instruments.

    No full text
    PurposeSurgeons performing total knee arthroplasty (TKA) are interested in the accuracy and time it takes to make the four femoral resections that determine the setting of the femoral component. A method for quantifying the error of each resection is the thickness, measured by a caliper, minus the femoral target. The present study tested the hypothesis that the mean deviation of the resection from the femoral target, the percentage of resections with a deviation of ± 0.5, 1.0, 1.5, and 2.0 mm, and the time to complete the femoral cuts were not different between experienced (E) and less-experienced (LE) surgeons performing unrestricted caliper verified kinematically aligned (KA) TKA with manual instruments.MethodsThis study analyzed intraoperative verification worksheets from 203 patients treated by ten E surgeons and 58 patients treated by four LE surgeons. The worksheet recorded (1) the thickness of the femoral target for the distal medial (DM), distal lateral (DL), posterior medial (PM), and posterior lateral (PL) resections and the caliper thickness of the resections with a resolution of 0.5 mm, and (2) the time to complete them. The most accurate resection has a mean difference ± standard deviation of 0 ± 0.0 mm.ResultsThe accuracy of the 1044 initial resections (261 patients) was significantly closer to the femoral target for E vs. the LE surgeons: 0.0 ± 0.4 vs. - 0.3 ± 0.5 for the DM, 0.0 ± 0.5 vs. - 0.4 ± 0.6 for the DL, - 0.1 ± 0.5 vs. - 0.2 ± 0.5 PM, and - 0.1 ± 0.5 vs. - 0.4 ± 0.6 for the PL resections (p ≤ 0.0248). E surgeons completed the femoral resections in 12 min; 5 min faster than LE surgeons (p < 0.0001).ConclusionsBecause the mean difference in femoral resections with manual instruments for E vs. LE surgeons was < 0.5 mm which is within the caliper's resolution, differences in accuracy were not clinically relevant. Surgeons exploring other alignment options and robotic, navigation, and patient-specific instrumentation might find these values helpful when deciding to change.Level of evidenceIII; case-control study
    corecore