5 research outputs found

    Minimization of defects in aluminium alloy castings using SQC

    Get PDF
    In the present world with the increasing use of Aluminium alloy wheels in automotive industry the Aluminium foundry industry had to focus on the quality of the products. The quality of a foundry industry can be increased by minimizing the casting defects during production. Aim of the current study is to study the production line of an aluminum alloy wheel manufacturing industry and to improve the quality of production using quality control tools. This study shows the systematic approach to find the root cause of a major defects in aluminium castings using defect diagnostic approach as well as cause and effect diagram. Casting defect analysis is carried out using techniques like historical data analysis, cause-effect diagrams, design of experiments and root cause analysis. Data from X-ray inspection (Radiographic Inspection) have been collected along with the production parameter data. Using check sheets data has been collected and all the defects have been studied. Using Pareto chart major defects in the aluminium castings were noted. The major defects for the rejections during production were identified as shrinkages, inclusions, porosity/gas holes and cracks. Each defect is studied thoroughly and the possible causes for the defects are shown in Fishbone Diagrams (Cause Effect Diagrams). As the shrinkages mainly occur due to lack of feedability during the fluid flow the stalk changing frequency is noted along with the shrinkages defects and a relation is drawn between them. As hydrogen forms gas holes and porosity in the aluminium castings the amount of hydrogen present in the molten metal is studied by finding specific gravity of the samples collected. The molten metal temperature effects the amount of the hydrogen absorbed by it. .So the effect of molten metal temperature on the specific gravity of the sample collected have been shown in a graph and the optimum value for molten metal temperature was found out

    A machine learning framework for quantifying chemical segregation and microstructural features in atom probe tomography data

    Full text link
    Atom probe tomography (APT) is ideally suited to characterize and understand the interplay of chemical segregation and microstructure in modern multicomponent materials. Yet, the quantitative analysis typically relies on human expertise to define regions of interest. We introduce a computationally efficient, multistage machine learning strategy to identify chemically distinct domains in a semi automated way, and subsequently quantify their geometric and compositional characteristics. In our algorithmic pipeline, we first coarse grain the APT data into voxels, collect the composition statistics, and decompose it via clustering in composition space. The composition classification then enables the real space segmentation via a density based clustering algorithm, thus revealing the microstructure at voxel resolution. Our approach is demonstrated for a Sm(Co,Fe)ZrCu alloy. The alloy exhibits two precipitate phases with a plate-like, but intertwined morphology. The primary segmentation is further refined to disentangle these geometrically complex precipitates into individual plate like parts by an unsupervised approach based on principle component analysis, or a U-Net based semantic segmentation trained on the former. Following the chemical and geometric analysis, detailed chemical distribution and segregation effects relative to the predominant plate-like geometry can be readily mapped without resorting to the initial voxelization

    Current Challenges and Opportunities in Microstructure-Related Properties of Advanced High-Strength Steels

    Get PDF
    This is a viewpoint paper on recent progress in the understanding of the microstructure–property relations of advanced high-strength steels (AHSS). These alloys constitute a class of high-strength, formable steels that are designed mainly as sheet products for the transportation sector. AHSS have often very complex and hierarchical microstructures consisting of ferrite, austenite, bainite, or martensite matrix or of duplex or even multiphase mixtures of these constituents, sometimes enriched with precipitates. This complexity makes it challenging to establish reliable and mechanism-based microstructure–property relationships. A number of excellent studies already exist about the different types of AHSS (such as dual-phase steels, complex phase steels, transformation-induced plasticity steels, twinning-induced plasticity steels, bainitic steels, quenching and partitioning steels, press hardening steels, etc.) and several overviews appeared in which their engineering features related to mechanical properties and forming were discussed. This article reviews recent progress in the understanding of microstructures and alloy design in this field, placing particular attention on the deformation and strain hardening mechanisms of Mn-containing steels that utilize complex dislocation substructures, nanoscale precipitation patterns, deformation-driven transformation, and twinning effects. Recent developments on microalloyed nanoprecipitation hardened and press hardening steels are also reviewed. Besides providing a critical discussion of their microstructures and properties, vital features such as their resistance to hydrogen embrittlement and damage formation are also evaluated. We also present latest progress in advanced characterization and modeling techniques applied to AHSS. Finally, emerging topics such as machine learning, through-process simulation, and additive manufacturing of AHSS are discussed. The aim of this viewpoint is to identify similarities in the deformation and damage mechanisms among these various types of advanced steels and to use these observations for their further development and maturation

    Current challenges and opportunities in microstructure-related properties of advanced high-strength steels

    Get PDF
    This is a viewpoint paper on recent progress in the understanding of the microstructure–property relations of advanced high-strength steels (AHSS). These alloys constitute a class of high-strength, formable steels that are designed mainly as sheet products for the transportation sector. AHSS have often very complex and hierarchical microstructures consisting of ferrite, austenite, bainite, or martensite matrix or of duplex or even multiphase mixtures of these constituents, sometimes enriched with precipitates. This complexity makes it challenging to establish reliable and mechanism-based microstructure–property relationships. A number of excellent studies already exist about the different types of AHSS (such as dual-phase steels, complex phase steels, transformation-induced plasticity steels, twinning-induced plasticity steels, bainitic steels, quenching and partitioning steels, press hardening steels, etc.) and several overviews appeared in which their engineering features related to mechanical properties and forming were discussed. This article reviews recent progress in the understanding of microstructures and alloy design in this field, placing particular attention on the deformation and strain hardening mechanisms of Mn-containing steels that utilize complex dislocation substructures, nanoscale precipitation patterns, deformation-driven transformation, and twinning effects. Recent developments on microalloyed nanoprecipitation hardened and press hardening steels are also reviewed. Besides providing a critical discussion of their microstructures and properties, vital features such as their resistance to hydrogen embrittlement and damage formation are also evaluated. We also present latest progress in advanced characterization and modeling techniques applied to AHSS. Finally, emerging topics such as machine learning, through-process simulation, and additive manufacturing of AHSS are discussed. The aim of this viewpoint is to identify similarities in the deformation and damage mechanisms among these various types of advanced steels and to use these observations for their further development and maturation.(OLD) MSE-
    corecore