100 research outputs found

    TABARNAC: Tools for Analyzing Behavior of Applications Running on NUMA Architecture

    Get PDF
    In modern parallel architectures, memory accesses represent a commonbottleneck. Thus, optimizing the way applications access the memory is an important way to improve performance and energy consumption. Memory accesses are even more important with NUMAmachines, as the access time to data depends on its location inthe memory. Many efforts were made todevelop adaptive tools to improve memory accesses at the runtime by optimizingthe mapping of data and threads to NUMA nodes. However, theses tools are notable to change the memory access pattern of the original application,therefore a code written without considering memory performance mightnot benefit from them. Moreover, automatic mapping tools take time to convergetowards the best mapping, losing optimization opportunities. Adeeper understanding of the memory behavior can help optimizing it,removing the need for runtime analysis.In this paper, we present TABARNAC, a tool for analyzing the memory behavior of parallel applications with a focus on NUMA architectures.TABARNAC provides a new visualization of the memory access behavior, focusing on thedistribution of accesses by thread and by structure. Such visualization allows thedeveloper to easily understand why performance issues occur and how to fix them.Using TABARNAC, we explain why some applications do not benefit from dataand thread mapping. Moreover, we propose several code modifications toimprove the memory access behavior of several parallel applications.Les accès mémoire représentent une source de problème de performance fréquenteavec les architectures parallèle moderne. Ainsi optimiser la manière dont lesapplications accèdent à la mémoire est un moyen efficace d'améliorer laperformance et la consommation d'énergie. Les accès mémoire prennent d'autantplus d'important avec les machines NUMA où le temps d'accès à une donnéedépend de sa localisation dans la mémoire. De nombreuse études ont proposéesdes outils adaptatif pour améliorer les accès mémoire en temps réel, cesoutils opèrent en changeant le placement des données et des thread sur lesnœuds NUMA. Cependant ces outils n'ont pas la possibilité de changer la façondont l'application accède à la mémoire. De ce fait un code développé sansprendre en compte les performances des accès mémoire pourrait ne pas en tirerparti. De plus les outils de placement automatique ont besoin de temps pourconverger vers le meilleur placement, perdant des opportunités d'optimisation.Mieux comprendre le comportement mémoire peut aider à l'optimiser et supprimerle besoin d'optimisation en temps réel.Cette étude présente TABARNAC un outil pour analyser le comportement mémoired'application parallèles s'exécutant sur architecture NUMA. TABARNAC offreune nouvelle forme de visualisation du comportement mémoire mettant l'accentsur la distribution des accès entre les thread et par structure de données. Cetype de visualisations permettent de comprendre facilement pourquoi lesproblèmes de performances apparaissent et comment les résoudre. En utilisantTABARNAC, nous expliquons pourquoi certaines applications ne tirent pas partid'outils placement de donnée et de thread. De plus nous proposons plusieursmodification de code permettant d'améliorer le comportement mémoire de plusieursapplications parallèles

    TABARNAC: Visualizing and Resolving Memory Access Issues on NUMA Architectures

    Get PDF
    International audienceIn modern parallel architectures, memory accesses represent a common bottleneck. Thus, optimizing the way applications access the memory is an important way to improve performance and energy consumption. Memory accesses are even more important with NUMA machines, as the access time to data depends on its location in the memory. Many efforts were made to develop adaptive tools to improve memory accesses at the runtime by optimizing the mapping of data and threads to NUMA nodes. However, theses tools are not able to change the memory access pattern of the original application, therefore a code written without considering memory performance might not benefit from them. Moreover, automatic mapping tools take time to converge towards the best mapping, losing optimization opportunities. A deeper understanding of the memory behavior can help optimizing it, removing the need for runtime analysis. In this paper, we present TABARNAC , a tool for analyzing the memory behavior of parallel applications with a focus on NUMA architectures. TABARNAC provides a new visualization of the memory access behavior, focusing on the distribution of accesses by thread and by structure. Such visualization allows the developer to easily understand why performance issues occur and how to fix them. Using TABARNAC , we explain why some applications do not benefit from data and thread mapping. Moreover, we propose several code modifications to improve the memory access behavior of several parallel applications. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credi

    Energy Efficient Seismic Wave Propagation Simulation on a Low-power Manycore Processor.

    No full text
    International audienceLarge-scale simulation of seismic wave propagation is an active research topic. Its high demand for processing power makes it a good match for High Performance Computing (HPC). Although we have observed a steady increase on the processing capabilities of HPC platforms, their energy efficiency is still lacking behind. In this paper, we analyze the use of a low-power manycore processor, the MPPA-256, for seismic wave propagation simulations. First we look at its peculiar characteristics such as limited amount of on-chip memory and describe the intricate solution we brought forth to deal with this processor's idiosyncrasies. Next, we compare the performance and energy efficiency of seismic wave propagation on MPPA-256 to other commonplace platforms such as general-purpose processors and a GPU. Finally, we wrap up with the conclusion that, even if MPPA-256 presents an increased software development complexity, it can indeed be used as an energy efficient alternative to current HPC platforms, resulting in up to 71% and 5.18x less energy than a GPU and a general-purpose processor, respectively

    TABARNAC: Tools for Analyzing Behavior of Applications Running on NUMA Architecture

    Get PDF
    In modern parallel architectures, memory accesses represent a commonbottleneck. Thus, optimizing the way applications access the memory is an important way to improve performance and energy consumption. Memory accesses are even more important with NUMAmachines, as the access time to data depends on its location inthe memory. Many efforts were made todevelop adaptive tools to improve memory accesses at the runtime by optimizingthe mapping of data and threads to NUMA nodes. However, theses tools are notable to change the memory access pattern of the original application,therefore a code written without considering memory performance mightnot benefit from them. Moreover, automatic mapping tools take time to convergetowards the best mapping, losing optimization opportunities. Adeeper understanding of the memory behavior can help optimizing it,removing the need for runtime analysis.In this paper, we present TABARNAC, a tool for analyzing the memory behavior of parallel applications with a focus on NUMA architectures.TABARNAC provides a new visualization of the memory access behavior, focusing on thedistribution of accesses by thread and by structure. Such visualization allows thedeveloper to easily understand why performance issues occur and how to fix them.Using TABARNAC, we explain why some applications do not benefit from dataand thread mapping. Moreover, we propose several code modifications toimprove the memory access behavior of several parallel applications.Les accès mémoire représentent une source de problème de performance fréquenteavec les architectures parallèle moderne. Ainsi optimiser la manière dont lesapplications accèdent à la mémoire est un moyen efficace d'améliorer laperformance et la consommation d'énergie. Les accès mémoire prennent d'autantplus d'important avec les machines NUMA où le temps d'accès à une donnéedépend de sa localisation dans la mémoire. De nombreuse études ont proposéesdes outils adaptatif pour améliorer les accès mémoire en temps réel, cesoutils opèrent en changeant le placement des données et des thread sur lesnœuds NUMA. Cependant ces outils n'ont pas la possibilité de changer la façondont l'application accède à la mémoire. De ce fait un code développé sansprendre en compte les performances des accès mémoire pourrait ne pas en tirerparti. De plus les outils de placement automatique ont besoin de temps pourconverger vers le meilleur placement, perdant des opportunités d'optimisation.Mieux comprendre le comportement mémoire peut aider à l'optimiser et supprimerle besoin d'optimisation en temps réel.Cette étude présente TABARNAC un outil pour analyser le comportement mémoired'application parallèles s'exécutant sur architecture NUMA. TABARNAC offreune nouvelle forme de visualisation du comportement mémoire mettant l'accentsur la distribution des accès entre les thread et par structure de données. Cetype de visualisations permettent de comprendre facilement pourquoi lesproblèmes de performances apparaissent et comment les résoudre. En utilisantTABARNAC, nous expliquons pourquoi certaines applications ne tirent pas partid'outils placement de donnée et de thread. De plus nous proposons plusieursmodification de code permettant d'améliorer le comportement mémoire de plusieursapplications parallèles
    • …
    corecore