
À.'-~~ ~z. L<--'--r- ch C.a.....-. ~..>....'t_c ... ~'O<O _

~~~~ ~u~ 
'l~ ~ d-:.s-~"'-~ \J 

A'-- • { "' ~ '- ~ ..._ -Ji.-.o ) 

A Comparison on Current Distributed 
File Systems for Beowulf Clusters 

Rafael Bohrer Ávila 1 

Philippe Olivier Alexandre Navaux2 

Yves Denneulin3 

Abstract 

C&J ~~ \ • o::. _ u ~ 00- C 

This paper presents a comparison on current file systems with optimised performance 
dedicated to cluster computing. It presents the main features o f three of such systems - xFS, 
PVFS and NFSP - and establishes comparisons between them, in relation to standard NFS, 
in terms o f performance, fault tolerance and adequacy to the Beowulf model. 

1 Introduction 

With the popularisation of Beowulf-class parallel machines (STERLING, 2002) and the 
constant improvements in technologies for computer components, it is becoming more and 
more common the deployment of clusters with hundreds o r even thousands of nodes. For such 
large-size systems, the performance of the file system becomes criticai. Traditional systems 
such as NFS (CALLAGHAN; PAWLOWSKI; STAUBACH, 1995) cannot be used directly since 
the nature of its centralised server becomes a criticai bottleneck for the whole cluster. In other 
words, scalability is an important issue for file systems of large clusters. In this way, many 
altematives to greater scalability, in severa! directions, are currently being pursued. In this 
paper we present and compare some of the many current file systems which present extended 
and/or modified features to accomplish the needed scalability for use with large clusters. 

2 File Systems for Beowulf Clusters 

The Network File System (CALLAGHAN; PAWLOWSKI; STAUBACH, 1995), or NFS, is 
the de facto standard for distributed file sharing in the Unix world, and consequently has 
been naturally absorbed by the Beowulf cluster model since its first steps (STERLING, 1999). 

1avila@inf.ufrgs .br Bols ista CAPES 
2navaux@inf . ufrgs . br 
3Yves . Denneulin@imag.fr 

121 



A Comparison on Current Distributed File Systems for Beowulf Clusters 

NFS was developed by Sun Microsystems and first carne out in 1985 with the release of 
SunOS 2.0. It is in fact a protocol for transparent remote access from a client to a server's file 
system. NFS is designed to be a stateless protocol4 , which means that a crash from one of the 
clients does not affect the server, and server crashes can be easily and transparently recovered 
when the server comes back. 

J;he Berkeley xFS5 (ANDERSON, 1995) was a prototype "serverless" file system devel
oped at the University of Califomia at Berkeley from 1993 to 1995. It builds upon severa! 
research efforts developed at the time, mainly on RAID, LFS (Log-structured File System), 
Zebra and Multiprocessor Cache Consistency (ali described on the same article from 1995). 
xFS presents a totally distributed design, where data and control information, or meta-data, 
are spread among the available machines (which may be ali or parto f the available computing 
resources) and can dynamically migrate. 

A prototype o f xFS h as been built and tested on a 32-node SPARCStation cluster at Berke
ley. Despi te the very promising results, however, the project stopped shortly after, and hence, 
to our knowledge, no further development or porting to Linux has been carried out to the 
present days. 

PVFS, Parallel Virtual File System (CARNS, 2000), is a joint project conducted by the 
Parallel Architecture Research Laboratory, at Clemson University, and the Argonne National 
Laboratory, both in the USA. The goal o f J?VFS is to pro vide a high-performance file system 
for the Beowulf class of para !lei machines, being able to profit from commodity hardware. 

The system can be viewed as a simplified version of xFS. Access to permanent storage is 
performed by 1/0 daemons, anda single, centralised manager is responsible for manipulating 
meta-data. Clients access the file system by means of the PVFS API, which has also been 
ported to a Linux VFS kemel module (i.e. it can be mounted) and to MPI-IO. 

NFSP - NFS Parallel - is án extension of the traditional NFS implementation, de
veloped at Laboratory IDIIMAG of Grenoble, that distributes the functionality of the NFS 
daemon over severa! processes on the cluster (LOMBARD; DENNEULIN, 2002). The idea be
hind NFSP is to pro vide an improvement in performance and scalability and at the same time 
keep the system simple and fully compatible with standard NFS clients. 

Similarly to PVFS, NFSP makes use of I/0 daemons to access data on the disks. The 
role of the NFS server is played by the nfspd, defined by the authors as a meta-server. This 
daemon appears to clients as the regular nfsd server; when a request for a given piece of data 
is received, the meta-server forwards the request to the corresponding I/0 daemon, which in 
turn performs the operation and sends the desired information directly to the client. 

Other Approaches - Severa! other research projects aim at a better performance for 
cluster file systems, using different approaches. Petal/Frangipani (LEE, 1998) is a parallel file 
system built upon the concept of a distributed virtual disk, where a set of daemons running 
on a number of machines cooperate to form the view of a single storage device. The Shared 

4The new NFS Version 4 will be stateful 
5Not to be confused with SGI 's XFS, with a capital "X" 

CI • Volume III • Número 1 • junho 2003 122 



A Comparison on Current Distributed File Systems for Beowulf Clusters 

Table 1: Overall performance comparison for the analysed systems (bandwidths are presented 
as an improvement ratio o ver that o f regular NFS) 

Item xFS PVFS NFSP 
l/0 servers 32 24 16 
Read bandwidth 11.04 17.76 4.0 
Write bandwidth 11.12 18.08 -
Read efficiency 34.75% 74% 25% 
Write efficiency 34.5% 75 .3% -

Logical Disk (SHILLNER; FELTEN, 1996) follows the same idea. Another approach is that 
of Storage Area Networks, in which there is a dedicated hardware support for parallel access 
to permanent storage. Examples are the IBM General Parallel File System (CORBETT et 
ai., 1995), SGI XFS (SWEENEY, 1996), and the OpenGFS (Global File System) (THE ... , 

2003). Though these systems are o f recognised importance, we will concentrate the following 
analysis on the previous ones, since we are targeted at Beowulf class systems, in which the 
use of commodity software and components is strongly desired. 

3 Analysis of the Presented Systems 

Overall Performance This comparison is based on performance measurements, in terms 
of maximum achievable bandwidth, presented by the authors of each system on the indicated 
references. It l s difficult to compare them directly since the results h ave been obtained on 
different test-beds. Therefore, we choose to present, for each system, the results relative 
to the reported regular NFS performance on the same environment. We also present the 
efficiency of each system in relation to the number o f I/0 servers used. 

Table 1 summarises the relative performances of each system. We have separated write 
and read performances since NFSP is not at present optimised for distributed writing, and 
thus a comparison would be unfair. It is also important to state that the results presented for 
xFS have been obtained from an early prototype, admittedly reported by the authors as not 
optimised. The system which presents best overall performance is PVFS, reflecting a very 
good efficiency in using the available I/0 servers and thus reaching improved bandwidth. For 
both xFS and PVFS, read and write performances are similar, since they use a symmetric 
approach for both operations, to the difference of NFSP. 

Scalability In this item we are evaluating the capacity of each system in increasing perfor
mance as the number o f clients and I/0 servers increase. 

NFS scalability, as already exposed, is deficient for large clusters. In fact, this deficiency 

CI • Volume III • Número 1 • junho 2003 123 



A Comparison on Current Distributed File Systems for Beowulf Clusters 

depends mostly on the interconnection technology being used. Current off-the-shelf hard 
disks detiver bandwidths in the range of 50-150 MB/s; this means that access to the NFS 
server is likely to be limited in about 11 MB/s by an ordinary Fast Ethemet network card 
even before the disk's full capacity may be reached. In other words, even a small 16-node 
cluster can be easily affected by the problem. 

• As a consequence, ali of the three systems presented are able to overcome standard NFS 
performance very quickly, even for a few client nodes; however, they differ in how the perfor
mance increase scales. xFS presents good scalability, especially up to about 8 client nodes, 
when the performance increase is practically linear (around 1 MB/s for 1 client, 7.5 MB/s 
for 8). NFSP scales linearly up to 6 clients and then stabilises, roughly at 50 MB/s. PVFS, 
once more, shows very good results: the system has presented practical linear scaling up to 
24 client nodes and 110 servers, when 226 MB/s can be achieved. 

The Jimits reached by the three systems reflect the characteristic mentioned before, that 
performance is Iimüed by network bandwidth rather than that of disk. The last two systems 
present results obtained using Fast Ethemet as interconnect, where a maximum bandwidth 
of 9-11 MB/s is usually achieved; as a consequence, 6 NFSP clients are lirnited at 50 MB/s 
(8.33 MB/s per client), and 24 PVFS clients are lirnited at 226 MB/s (9.41 MB/s per client) . 
It also explains why PVFS does not scale beyond this lirnit: even though up to 30 nodes have 
been used, the number o f 110 servers was kept at 24. In the case o f NFSP, the authors suspect 
that the lirniting in performance happens because of the meta-server's CPU saturating; they 
expect the system to deliver better pe1formance after some optirnisation in the code. 

These results suggest that the network design in a cluster file system should be carefully 
studied. Techniques such as channel bonding (using two network cards as one), whose sup
port is readily available in the Lwux kemel , o r an expected popularisation o f Gigabit Ethemet 
may contribute to that. 

Fault Tolerance This feature can be viewed in two leveis: temporary service unavailability 
and crash failure. NFS supports the first, but not the second. Up to version 3, NFS is a 
stateless protocol , which means that temporary server unavailability is tolerated by the clients, 
but a crash is fatal. This adapts well to a real scenario, where hardware failures are less 
frequent but eventual stops/restarts may occur (e .g. when upgrading software "on the fly"). 

When discussion comes to distributed servers, fault tolerance becomes more difficult do 
realise or imposes significant overhead, and as such it is frequently left aside. xFS makes use 
of RAID to provide fault tolerance, as well as for improved performance. Storage servers 
are divided in groups, and in each group one server is dedicated for parity. Thus, failure 
in one of the servers (even perrnanent) can be coped with. NFSP benefits from the same 
stateless model of NFS, in the sense that temporary failures can be tolerated. The current 
implementation does not provide a mechanism for tolerating failures in the 110 nodes, but 
the authors do mention redundancy as a future improvement, which mfiy introduce a levei of 
error recovery capability. The PVFS design does not include support for fault tolerance; this 

CI • Volume III • Número 1 • junho 2003 124 



A Comparison on Current Distributed File Systems for Beowulf Clusters 

seems to be planned for version 2 of the system. 

Integration with the Beowulf model For integration with the Beowulf model, we consider 
characteristics such as availability of the software, no requirement for a specific technology, 
and licensing of the whole system as open source. We also evaluate the complexity of inte
grating the system in a regular Linux cluster. 

Except for xFS, ali the other systems fully comply with the first requirements. The for
mer was only implemented for an early version of Solaris, and is to our knowledge not yet 
available for Linux. NFS is traditionally included on every current Linux distribution. Its use 
is straightforward, requiring single file configuration on both server and client side. NFSP 
presents an irnportant feature in this sense, allowing for the client side to remain untouched. 
Configuration on the server si deis also not too complex, being similar to that o f NFS. 

PVFS represents the most "intrusive" solution, since it requires dedicated configuration 
on both sides. While the client side does not differ much from NFS, requiring only a ker
nel VFS (Virtual File System) module to be compiled, the server side does demand further 
configuration. 

4 Final Considerations 

Many developments, in severa! directions, can be observed today conceming high perfor
mance file systems for clusters, given that NFS represents a potential bottleneck. In this paper 
we have concentrated on some of the systems more directly targeted at the Beowulf class of 
parallel machines, in the sense that no specific hardware or comrnunication technology be 
required for their proper utilisation. Available comrnercial file systems for high-perforrnance 
computing ofterr exhibit that requirement. 

Table 2 summarises the analysed features o f each system in a simplified form. Tbe Berke
ley xFS seems a prornising design, since very good results have been obtained, even with an 
unoptimised prototype; the system, however, has not been further developed or ported to 
Linux, rendering itself currently not eligible as a solution for Beowulf clusters. PVFS is cur
rently becoming a kind o f de facto standard in the Beowulf world. The system presents very 
good performance and scalability, and supports severa! APis including a Linux VFS module, 
with a slight complexity in management. Version 2 is currently being developed, and will 
include features for grid computing and fault tolerance. NFSP is also in an early stage of de
velopment, but presents encouraging results, besides being compatible with the standard NFS 
client. A design altemative allowing for concurrent write operations would also be desirable. 

CI • Volume III • Número 1 • junho 2003 125 



A Comparison on Current Distributed File Systems for Beowulf Clusters 

Table 2: Summary of the analysed features 
Item NFS xFS PVFS NFSP 
Performance regular good very good good 
Scalability poor good very good regular 
Fault tolerance temporary eras h none temporary 
Beowulf integration very easy none not trivial easy 

References 

ANDERSON, T. E. et ai. Serverless network fi I e systems. In: ACM. Proc. of the 15th Sym
posium on Operating Systems Principies. Copper Mountain Resort, Colorado, 1995. p. 109-
126. 

CALLAGHAN, B.; PAWLOWSKI, B.; STAUBACH, P. NFS Version 3 Protocol Specifica
tion: RFC 1831. [S.I.],jun.l995. 

CARNS, P. H. et a!. PVFS: a parallel file system for Linux clusters. In: Proc. ofthe 4th An
nual Linux Showcase and Conference. Atlanta, GA: [s.n.], 2000. p. 317-327. Best Paper 
Award. 

CORBETT, P. F. et ai. Parallel file systems for the IBM SP computers. IBM Systems Joumal, 
v.34,n. 2,p.222-248,jan. 1995. 

LEE, E. K. et ai. A Comparison ofTwo Distributed Disk Systems. [S.l.], abr. 1998. 

LOMBARD, P.; DENNEULIN, Y. nfsp: a distributed NFS server for clusters of workstations. 
In: Proc. of rhe 16th Intemafional Parallel & Distributed Processing Symposium, IPDPS. 
Ft. Lauderdale, Florida, USA: Los Alamitos, IEEE Computer Society, 2002. p. 35 . Abstract 
only, full paper avai lable in CD-ROM. 

SHILLNER, R. A.; FELTEN, E. W. Simplifying Distributed File Systems Using a Shared 
Logical Disk. Princeton, NJ, 1996. ' 

STERLING, T. L. BeowulfCluster Computing with Linux. Cambridge: MIT Press, 2002. 

STERLING, T. L. et ai. How to Build a Beowulf: a Guide to the lmplementation and Appli
cation of PC Clusters. Cambridge: MIT, 1999. 239 p. 

SWEENEY, A. et ai. Scalability in the XFS file system. In: Proceedings of the USENIX 
1996 Technical Conference. San Diego, CA, USA: [s.n.] , 1996. p. 1-14. Disponível em: 
< citeseer.n j .nec.comlsweeney96scalabi lity.htm I>. 

THE OpenGFS Project. abr. 2003. Disponível em: <http://opengfs.sourceforge.net>. Access 
em: abril2003 . 

CI • Volume Ill • Número 1 • junho 2003 126 


