660 research outputs found

    Platinum(II)-Acyclovir Complexes: Synthesis, Antiviral and Antitumour Activity

    Get PDF
    A platinum(II) complex with the antiviral drug acyclovir was synthesized and its antiviral and anticancer properties were investigated in comparison to those of acyclovir and cisplatin. The platinum-acyclovir complex maintained the antiviral activity of the parent drug acyclovir, though showing a minor efficacy on a molar basis (ID50  =   7.85 and 1.02 μΜ for platinum-acyclovir and cisplatin, respectively). As anticancer agent, the platinum-acyclovir complex was markedly less potent than cisplatin on a mole-equivalent basis, but it was as effective as cisplatin when equitoxic dosages were administered in vivo to P388 leukaemia-bearing mice (%T/C = 209 and 211 for platinum-acyclovir and cisplatin, respectively). The platinum-acyclovir complex was also active against a cisplatin-resistant subline of the P388 leukaemia (%T/C = 140), thus suggesting a different mechanism of action. The DNA interaction properties (sequence specificity and interstrand cross-linking ability) of platinum-acyclovir were also investigated in comparison to those of cisplatin and [Pt(dien)Cl]+, an antitumour-inactive platinum-triamine compound. The results of this study point to a potential new drug endowed, at the same time, with antiviral and anticancer activity and characterized by DNA interaction properties different from those of cisplatin

    Role of Metal Ions and Hydrogen Bond Acceptors in the Tautomeric Equilibrium of Nitro-9[(Alkylamino)Amino]-Acridine Drugs

    Get PDF
    3-nitro-9-[2-(dialkylamino)ethyl)]aminoacridines (alkyl = methyl or ethyl) have been used as ligands towards platinum(If). The end product is a complex in which the acridine acts as a tridentate ligand contributing the two exocyclic nitrogen atoms and one of the two peri carbons. The metallation takes place predominantly at the peri position of the unsubstituted ring. The coordinated acridine is in the imino tautomeric form although, in the free state, it occurs exclusively in the amino form (both in the solid state and in solution). The imino tautomer is considered to be the biologically active form. In the platinated species the N(10)H of the acridine can be involved in strong hydrogen bonding with a chloride ion leading to formation of an association complex, the formation constant has been found to be 1.4±103 M−1. The N(10)H┄CI interaction can influence the tautomeric equilibrium of the acridine dye also in the uncoordinated species, however, the shift in favor of the imino tautomer is not complete

    Engineering Cu2O Nanowire Surfaces for Photoelectrochemical Hydrogen Evolution Reaction

    Get PDF
    Cu2O is a narrow band gap material serving as an important candidate for photoelectrochemical hydrogen evolution reaction. However, the main challenge that hinders its practical exploitation is its poor photostability, due to its oxidation into CuO by photoexcited holes. Here, we thoroughly minimize the photo-oxidation of Cu2O nanowires by growing a thin layer of the TiO2 protective layer and an amorphous layer of the VOx cocatalyst using magnetron sputtering and atomic layer deposition, respectively. After optimization of the protective and the cocatalyst layers, the photoelectrode exhibits a current density of -2.46 mA/cm2 under simulated sunlight (100 mW/cm2) at 0.3 V versus reversible hydrogen electrode, and its performance is stable for an extended illumination time. The chemical stability and the good performance of the engineered photoelectrode demonstrate the potential of using earth-abundant materials as a light-harvesting device for solar hydrogen production

    Platinum(IV) complexes of trans-1,2-diamino-4-cyclohexene: Prodrugs affording an oxaliplatin analogue that overcomes cancer resistance

    Get PDF
    Six platinum(IV) compounds derived from an oxaliplatin analogue containing the unsaturated cyclic diamine trans-1,2-diamino-4-cyclohexene (DACHEX), in place of the 1,2-diaminocyclohexane, and a range of axial ligands, were synthesized and characterized. The derivatives with at least one axial chlorido ligand demonstrated solvent-assisted photoreduction. The electrochemical redox behavior was investigated by cyclic voltammetry; all compounds showed reduction potentials suitable for activation in vivo. X-ray photoelectron spectroscopy (XPS) data indicated an X-ray-induced surface reduction of the Pt(IV) substrates, which correlates with the reduction potentials measured by cyclic voltammetry. The cytotoxic activity was assessed in vitro on a panel of human cancer cell lines, also including oxaliplatin-resistant cancer cells, and compared with that of the reference compounds cisplatin and oxaliplatin; all IC50 values were remarkably lower than those elicited by cisplatin and somewhat lower than those of oxaliplatin. Compared to the other Pt(IV) compounds of the series, the bis-benzoate derivative was by far (5–8 times) the most cytotoxic showing that low reduction potential and high lipophilicity are essential for good cytotoxicity. Interestingly, all the complexes proved to be more active than cisplatin and oxaliplatin even in three-dimensional spheroids of A431 human cervical cancer cells

    New oxaliplatin-pyrophosphato analogs with improved in vitro cytotoxicity

    Get PDF
    Two new Pt(II)-pyrophosphato complexes containing the carrier ligands cis-1,3- diaminocyclohexane (cis-1,3-DACH) and trans-1,2-diamine-4-cyclohexene (1,2-DACHEX), variants of the 1R,2R-diaminocyclohexane ligand present in the clinically used Pt-drug oxaliplatin, have been synthesized with the aim of developing new potential antitumor drugs with high bone tropism. The complexes are more stable at physiological pH than in acid conditions, with Na2[Pt(pyrophosphato)(cis-1,3-DACH)] (1) slightly more stable than Pt(dihydrogenpyrophosphato)(1,2-DACHEX)] (2). The greater reactivity at acidic pH ensures a greater efficacy at the tumor site. Preliminary NMR studies indicate that 1 and 2 react slowly with 5’-GMP (used as a model of nucleic acids), releasing the pyrophosphate ligand and affording the bis 5’-GMP adduct. In vitro cytotoxicity assays performed against a panel of four human cancer cell lines have shown that both compounds are more active than oxaliplatin. Flow cytometry studies on HCT116 cells showed that the pyrophosphato compounds with the non-classical 1,3- and 1,4- diaminocyclohexane ligands (1 and 4) are the most capable to induce cells’ death by apoptosis and necrosis

    A Wasserstein approach to the one-dimensional sticky particle system

    Full text link
    We present a simple approach to study the one-dimensional pressureless Euler system via adhesion dynamics in the Wasserstein space of probability measures with finite quadratic moments. Starting from a discrete system of a finite number of "sticky" particles, we obtain new explicit estimates of the solution in terms of the initial mass and momentum and we are able to construct an evolution semigroup in a measure-theoretic phase space, allowing mass distributions with finite quadratic moment and corresponding L^2-velocity fields. We investigate various interesting properties of this semigroup, in particular its link with the gradient flow of the (opposite) squared Wasserstein distance. Our arguments rely on an equivalent formulation of the evolution as a gradient flow in the convex cone of nondecreasing functions in the Hilbert space L^2(0,1), which corresponds to the Lagrangian system of coordinates given by the canonical monotone rearrangement of the measures.Comment: Added reference

    Hierarchically Porous Gd3+-Doped CeO2 Nanostructures for the Remarkable Enhancement of Optical and Magnetic Properties

    Get PDF
    Rare earth ion-doped CeO2 has attracted more and more attention because of its special electrical, optical, magnetic, or catalytic properties. In this paper, a facile electrochemical deposition route was reported for the direct growth of the porous Gd-doped CeO2. The formation process of Gd-doped CeO2 composites was investigated. The obtained deposits were characterized by SEM, EDS, XRD, and XPS. The porous Gd3+- doped CeO2 (10 at% Gd) displays a typical type I adsorption isotherm and yields a large specific surface area of 135 m2/g. As Gd3+ ions were doped into CeO2 lattice, the absorption spectrum of Gd3+-doped CeO2 nanocrystals exhibited a red shift compared with porous CeO2 nanocrystals and bulk CeO2, and the luminescence of Gd3+-doped CeO2 deposits was remarkably enhanced due to the presence of more oxygen vacancies. In addition, the strong magnetic properties of Gd-doped CeO2 (10 at% Gd) were observed, which may be caused by Gd3+ ions or more oxygen defects in deposits. In addition, the catalytic activity of porous Gd-doped CeO2 toward CO oxidation was studied

    Ruthenium polypyridyl complexes and their modes of interaction with DNA : is there a correlation between these interactions and the antitumor activity of the compounds?

    Get PDF
    Various interaction modes between a group of six ruthenium polypyridyl complexes and DNA have been studied using a number of spectroscopic techniques. Five mononuclear species were selected with formula [Ru(tpy) L1L2](2-n)?, and one closely related dinuclear cation of formula [{Ru(apy)(tpy)}2{l-H2N(CH2)6NH2}]4?. The ligand tpy is 2,20:60,200-terpyridine and the ligand L1 is a bidentate ligand, namely, apy (2,20-azobispyridine), 2-phenylazopyridine, or 2-phenylpyridinylmethylene amine. The ligand L2 is a labile monodentate ligand, being Cl-, H2O, or CH3CN. All six species containing a labile L2 were found to be able to coordinate to the DNA model base 9-ethylguanine by 1H NMR and mass spectrometry. The dinuclear cationic species, which has no positions available for coordination to a DNA base, was studied for comparison purposes. The interactions between a selection of four representative complexes and calf-thymus DNA were studied by circular and linear dichroism. To explore a possible relation between DNA-binding ability and toxicity, all compounds were screened for anticancer activity in a variety of cancer cell lines, showing in some cases an activity which is comparable to that of cisplatin. Comparison of the details of the compound structures, their DNA binding, and their toxicity allows the exploration of structure–activity relationships that might be used to guide optimization of the activity of agents of this class of compounds

    Copper-Triggered Aggregation of Ubiquitin

    Get PDF
    Neurodegenerative disorders share common features comprising aggregation of misfolded proteins, failure of the ubiquitin-proteasome system, and increased levels of metal ions in the brain. Protein aggregates within affected cells often contain ubiquitin, however no report has focused on the aggregation propensity of this protein. Recently it was shown that copper, differently from zinc, nickel, aluminum, or cadmium, compromises ubiquitin stability and binds to the N-terminus with 0.1 micromolar affinity. This paper addresses the role of copper upon ubiquitin aggregation. In water, incubation with Cu(II) leads to formation of spherical particles that can progress from dimers to larger conglomerates. These spherical oligomers are SDS-resistant and are destroyed upon Cu(II) chelation or reduction to Cu(I). In water/trifluoroethanol (80∶20, v/v), a mimic of the local decrease in dielectric constant experienced in proximity to a membrane surface, ubiquitin incubation with Cu(II) causes time-dependent changes in circular dichroism and Fourier-transform infrared spectra, indicative of increasing β-sheet content. Analysis by atomic force and transmission electron microscopy reveals, in the given order, formation of spherical particles consistent with the size of early oligomers detected by gel electrophoresis, clustering of these particles in straight and curved chains, formation of ring structures, growth of trigonal branches from the rings, coalescence of the trigonal branched structures in a network. Notably, none of these ubiquitin aggregates was positive to tests for amyloid and Cu(II) chelation or reduction produced aggregate disassembly. The early formed Cu(II)-stabilized spherical oligomers, when reconstituted in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes and in POPC planar bilayers, form annular and pore-like structures, respectively, which are common to several neurodegenerative disorders including Parkinson's, Alzheimer's, amyotrophic lateral sclerosis, and prion diseases, and have been proposed to be the primary toxic species. Susceptibility to aggregation of ubiquitin, as it emerges from the present study, may represent a potential risk factor for disease onset or progression while cells attempt to tag and process toxic substrates

    Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies

    Get PDF
    Surface functionalized magnetic iron oxide nanoparticles (NPs) are a kind of novel functional materials, which have been widely used in the biotechnology and catalysis. This review focuses on the recent development and various strategies in preparation, structure, and magnetic properties of naked and surface functionalized iron oxide NPs and their corresponding application briefly. In order to implement the practical application, the particles must have combined properties of high magnetic saturation, stability, biocompatibility, and interactive functions at the surface. Moreover, the surface of iron oxide NPs could be modified by organic materials or inorganic materials, such as polymers, biomolecules, silica, metals, etc. The problems and major challenges, along with the directions for the synthesis and surface functionalization of iron oxide NPs, are considered. Finally, some future trends and prospective in these research areas are also discussed
    • …
    corecore