2,026 research outputs found
Fragmenting networks by targeting collective influencers at a mesoscopic level
A practical approach to protecting networks against epidemic processes such
as spreading of infectious diseases, malware, and harmful viral information is
to remove some influential nodes beforehand to fragment the network into small
components. Because determining the optimal order to remove nodes is a
computationally hard problem, various approximate algorithms have been proposed
to efficiently fragment networks by sequential node removal. Morone and Makse
proposed an algorithm employing the non-backtracking matrix of given networks,
which outperforms various existing algorithms. In fact, many empirical networks
have community structure, compromising the assumption of local tree-like
structure on which the original algorithm is based. We develop an immunization
algorithm by synergistically combining the Morone-Makse algorithm and coarse
graining of the network in which we regard a community as a supernode. In this
way, we aim to identify nodes that connect different communities at a
reasonable computational cost. The proposed algorithm works more efficiently
than the Morone-Makse and other algorithms on networks with community
structure.Comment: 5 figures, 3 tables, and SI include
On the Termination Problem for Probabilistic Higher-Order Recursive Programs
In the last two decades, there has been much progress on model checking of
both probabilistic systems and higher-order programs. In spite of the emergence
of higher-order probabilistic programming languages, not much has been done to
combine those two approaches. In this paper, we initiate a study on the
probabilistic higher-order model checking problem, by giving some first
theoretical and experimental results. As a first step towards our goal, we
introduce PHORS, a probabilistic extension of higher-order recursion schemes
(HORS), as a model of probabilistic higher-order programs. The model of PHORS
may alternatively be viewed as a higher-order extension of recursive Markov
chains. We then investigate the probabilistic termination problem -- or,
equivalently, the probabilistic reachability problem. We prove that almost sure
termination of order-2 PHORS is undecidable. We also provide a fixpoint
characterization of the termination probability of PHORS, and develop a sound
(but possibly incomplete) procedure for approximately computing the termination
probability. We have implemented the procedure for order-2 PHORSs, and
confirmed that the procedure works well through preliminary experiments that
are reported at the end of the article
Almost Every Simply Typed Lambda-Term Has a Long Beta-Reduction Sequence
It is well known that the length of a beta-reduction sequence of a simply
typed lambda-term of order k can be huge; it is as large as k-fold exponential
in the size of the lambda-term in the worst case. We consider the following
relevant question about quantitative properties, instead of the worst case: how
many simply typed lambda-terms have very long reduction sequences? We provide a
partial answer to this question, by showing that asymptotically almost every
simply typed lambda-term of order k has a reduction sequence as long as
(k-1)-fold exponential in the term size, under the assumption that the arity of
functions and the number of variables that may occur in every subterm are
bounded above by a constant. To prove it, we have extended the infinite monkey
theorem for strings to a parametrized one for regular tree languages, which may
be of independent interest. The work has been motivated by quantitative
analysis of the complexity of higher-order model checking
Pumping Lemma for Higher-order Languages
We study a pumping lemma for the word/tree languages generated by higher-order grammars. Pumping lemmas are known up to order-2 word languages (i.e., for regular/context-free/indexed languages), and have been used to show that a given language does not belong to the classes of regular/context-free/indexed languages. We prove a pumping lemma for word/tree languages of arbitrary orders, modulo a conjecture that a higher-order version of Kruskal\u27s tree theorem holds. We also show that the conjecture indeed holds for the order-2 case, which yields a pumping lemma for order-2 tree languages and order-3 word languages
- …