10 research outputs found

    Riboswitch-Based Reversible Dual Color Sensor

    No full text
    Riboswitches are RNA-based “sensors” that utilize chemically induced structural changes in the 5′-untranslated region of mRNA to regulate expression of downstream genes. Coupling a specific riboswitch with a reporter gene system translates chemical detection by the cell into a quantifiable reporter protein signal. For the majority of reporter gene systems, the readout signal is only expressed in the presence of the target analyte. This makes it difficult to determine the viability and localization of the uninduced biosensor when it is used for “real-word” applications. To address this problem, we developed a dual-color reporter comprising elements of the <i>E. coli</i> fimbriae phase variation system: recombinase FimE controlled by a synthetic riboswitch and an invertible DNA segment (<i>fimS</i>) containing a constitutively active promoter placed between two fluorescent protein genes. Without an analyte, the fluorescent reporter constitutively expressed green fluorescent protein (GFPa1). Addition of the analyte initiated translation of <i>fimE</i> causing unidirectional inversion of the <i>fimS</i> segment and constitutive expression of red fluorescent protein (mKate2). Thus, the sensor is always fluorescent, but its color is determined by detection of a specific analyte. We demonstrate that the recombinase-based dual-color reporter can be successfully applied to monitor the activation of a theophylline synthetic riboswitch that was used as our model system. To show the feasibility of the FimE recombinase-based system to serve as a reporter for monitoring activation of multiple synthetic riboswitches and, therefore, expand the applicability of the system, we tested a number of previously developed synthetic riboswitches responsive to different analytes. We show that the dual-color reporter system can be successfully used to monitor activation of M6 and M6″ riboswitches responsive to ammeline and pyrimido­[4,5-<i>d</i>]­pyrimidine-2,4-diamine, respectively, and a 2,4,6-trinitrotoluene-responsive riboswitch developed in this study. We also demonstrate that the system can be reversed by HbiF recombinase-mediated <i>fimS</i> inversion to the initial state of the fluorescent reporter, creating a resettable and reusable cell-based sensor

    Development of a 2,4-Dinitrotoluene-Responsive Synthetic Riboswitch in <i>E. coli</i> Cells

    No full text
    Riboswitches are RNA sequences that regulate expression of associated downstream genes in response to the presence or absence of specific small molecules. A novel riboswitch that activates protein translation in <i>E. coli</i> cells in response to 2,4-dinitrotoluene (DNT) has been engineered. A plasmid library was constructed by incorporation of 30 degenerate bases between a previously described trinitrotoluene aptamer and the ribosome binding site. Screening was performed by placing the riboswitch library upstream of the Tobacco Etch Virus (TEV) protease coding sequence in one plasmid; a second plasmid encoded a FRET-based construct linked with a peptide containing the TEV protease cleavage site. Addition of DNT to bacterial culture activated the riboswitch, initiating translation of TEV protease. In turn, the protease cleaved the linker in the FRET-based fusion protein, causing a change in fluorescence. This new riboswitch exhibited a 10-fold increase in fluorescence in the presence of 0.5 mM DNT compared to the system without target

    Foyer-magazine : revue mensuelle

    No full text
    octobre 19361936/10 (A3)-1936/10.Appartient à l’ensemble documentaire : RhoneAlp

    Immobilization of Recombinant <i>E. coli</i> Cells in a Bacterial Cellulose–Silk Composite Matrix To Preserve Biological Function

    No full text
    Strategies for the encapsulation of cells for the design of cell-based sensors require efficient immobilization procedures while preserving biological activity of the reporter cells. Here, we introduce an immobilization technique that relies upon the symbiotic relationship between two bacterial strains: cellulose-producing <i>Gluconacetobacter xylinus</i> cells; and recombinant <i>Escherichia coli</i> cells harboring recombinase-based dual-color synthetic riboswitch (RS), as a model for cell-based sensor. Following sequential coculturing of recombinant cells in the cellulose matrix, final immobilization of <i>E. coli</i> cells was completed after reconstituted silk fibroin (SF) protein was added to a “living membrane” generating the composite bacterial cellulose-silk fibroin (BC-SF) scaffold. By controlling incubation parameters for both types of cells, as well as the conformations in SF secondary structure, a variety of robust composite scaffolds were prepared ranging from opaque to transparent. The properties of the scaffolds were compared in terms of porosity, water capacity, distribution of recombinant cells within the scaffolds matrix, onset of cells activation, and ability to protect recombinant function of cells against UV irradiation. The closer-fitted microstructure of transparent BC-SF scaffolds resulted in leakage-free encapsulation of recombinant cells with preserved RS function because of a combination of several parameters that closely matched properties of a biofilm environment. Along with proper elasticity, fine porosity, capacity to retain the water, and ability of SF to absorb UV light, the composite hydrogel material provided necessary conditions to form confined cell colonies that modified cell metabolism and enhanced cell resilience to the stresses induced by encapsulation

    Optimization of a Paper-Based ELISA for a Human Performance Biomarker

    No full text
    Monitoring aspects of human performance during various activities has recently become a highly investigated research area. Many new commercial products are available now to monitor human physical activity or responses while performing activities ranging from playing sports, to driving, and even sleeping. However, monitoring cognitive performance biomarkers, such as neuropeptides, is still an emerging field due to the complicated sample collection and processing, as well as the need for a clinical lab to perform analysis. Enzyme-linked immunosorbent assays (ELISAs) provide specific detection of biomolecules with high sensitivity (picomolar concentrations). Even with the advantage of high sensitivity, most ELISAs need to be performed in a laboratory setting and require around 6 h to complete. Transitioning this assay to a platform where it reduces cost, shortens assay time, and is able to be performed outside a lab is invaluable. Recently developed paper diagnostics provide an inexpensive platform on which to perform ELISAs; however, the major limiting factor for moving out of the laboratory environment is the measurement and analysis instrumentation. Using something as simple as a digital camera or camera-enabled Windows- or Android-based tablets, we are able to image paper-based ELISAs (P-ELISAs), perform image analysis, and produce response curves with high correlation to target biomolecule concentration in the 10 pM range. Neuropeptide Y detection was performed. Additionally, silver enhancement of Au NPs conjugated with IgG antibodies showed a concentration-dependent response to IgG, thus eliminating the need for an enzyme–substrate system. Automated image analysis and quantification of antigen concentrations are able to be performed on Windows- and Android-based mobile platforms

    Silk Macromolecules with Amino Acid–Poly(Ethylene Glycol) Grafts for Controlling Layer-by-Layer Encapsulation and Aggregation of Recombinant Bacterial Cells

    No full text
    This study introduces double-brush designs of functionalized silk polyelectrolytes based upon regenerated silk fibroin (SF), which is modified with poly-l-lysine (SF-PLL), poly-l-glutamic acid (SF-PGA), and poly(ethylene glycol) (PEG) side chains with different grafting architecture and variable amino acid-PEG graft composition for cell encapsulation. The molecular weight of poly amino acids (length of side chains), molecular weight and degree of PEG grafting (<i>D</i>) were varied in order to assess the formation of cytocompatible and robust layer-by-layer (LbL) shells on two types of bacterial cells (Gram-negative and Gram-positive bacteria). We observed that shells assembled with charged polycationic amino acids adversely effected the properties of microbial cells while promoting the formation of large cell aggregates. In contrast, hydrogen-bonded shells with high PEG grafting density were the most cytocompatible, while promoting formation of stable colloidal suspensions of individual cell encapsulates. The stability to degradation of silk shells (under standard cell incubation procedure) was related to the intrinsic properties of thermodynamic bonding forces, with shells based on electrostatic interactions having stronger resistance to deterioration compared to pure hydrogen-bonded silk shells. By optimizing the charge density of silk polyelectrolytes brushes, as well as the length and the degree of PEG side grafts, robust and cytocompatible cell coatings were engineered that can control aggregation of cells for biosensor devices and other potential biomedical applications

    Structured DNA Aptamer Interactions with Gold Nanoparticles

    No full text
    DNA aptamers that bind biomolecular targets are of interest as the recognition element in colorimetric sensors based on gold nanoparticles (AuNP), where sensor functionality is related to changes in AuNP colloidal stability upon target binding. In order to understand the role of target binding on DNA–AuNP colloidal stability, we have used high-resolution NMR to characterize the interactions of the 36 nucleotide cocaine-binding aptamer (MN4) and related aptamers with AuNPs, cocaine, and cocaine metabolites. Changes in the aptamer imino proton NMR spectra with low (20 nM) concentrations of AuNP show that the aptamers undergo fast-exchange adsorption on the nanoparticle surface. An analysis of the spectral changes and the comparison with modified MN4 aptamers shows that the AuNP binding domain is localized on stem two of the three-stemmed aptamer. The identification of an AuNP recognition domain allows for the incorporation of AuNP binding functionality into a wide variety of aptamers. AuNP-induced spectral changes are not observed for the aptamer–AuNP mixtures in the presence of cocaine, demonstrating that aptamer absorption on the AuNP surface is modulated by aptamer–target interactions. The data also show that the DNA–AuNP interactions and sensor functionality are critically dependent on aptamer folding

    Bacterial Sunscreen: Layer-by-Layer Deposition of UV-Absorbing Polymers on Whole-Cell Biosensors

    No full text
    UV-protective coatings on live bacterial cells were created from the assembly of cationic and UV-absorbing anionic polyelectrolytes using layer-by-layer (LbL) methodology. A cationic polymer (polyallylamine) and three different anionic polymers with varying absorbance in the UV range (poly­(vinyl sulfate), poly­(4-styrenesulfonic acid), and humic acid) were used to encapsulate Escherichia coli cells with two different green fluorescent protein (GFP) expression systems: constitutive expression of a UV-excitable GFP (GFPuv) and regulated expression of the intensely fluorescent GFP from amphioxus (GFPa1) through a theophylline-inducible riboswitch. Riboswitches activate protein expression after specific ligand–RNA binding events. Hence, they operate as a cellular biosensor that will activate reporter protein synthesis after exposure to a ligand target. E. coli cells coated with UV-absorbing polymers demonstrated enhanced protection of GFP stability, metabolic activity, and viability after prolonged exposure to radiation from a germicidal lamp. The results show the effectiveness of LbL coatings to provide UV protection to living cells for biotechnological applications

    Influence of Silica Matrix Composition and Functional Component Additives on the Bioactivity and Viability of Encapsulated Living Cells

    No full text
    The remarkable impact encapsulation matrix chemistry can have on the bioactivity and viability of integrated living cells is reported. Two silica chemistries (aqueous silicate and alkoxysilane), and a functional component additive (glycerol), are employed to generate three distinct silica matrices. These matrices are used to encapsulate living <i>E. coli</i> cells engineered with a synthetic riboswitch for cell-based biosensing. Following encapsulation, membrane integrity, reproductive capability, and riboswitch-based protein expression levels and rates are measured over a 5 week period. Striking differences in <i>E. coli</i> bioactivity, viability, and biosensing performance are observed for cells encapsulated within the different matrices. <i>E. coli</i> cells encapsulated for 35 days in aqueous silicate-based (AqS) matrices showed relatively low membrane integrity, but high reproductive capability in comparison to cells encapsulated in glycerol containing sodium silicate-based (AqS + g) and alkoxysilane-based (PGS) gels. Further, cells in sodium silicate-based matrices showed increasing fluorescence output over time, resulting in a 1.8-fold higher fluorescence level, and a faster expression rate, over cells free in solution. This unusual and unique combination of biological properties demonstrates that careful design of the encapsulation matrix chemistry can improve functionality of the biocomposite material, and result in new and unexpected physiological states
    corecore