15,113 research outputs found

    Life sciences on-line: A study in hypermedia application

    Get PDF
    The main objective was to determine the feasibility of using a computer-based interactive information recall module for the Life Sciences Project Division (LSPD) at NASA, Johnson Space Center. LSPD personnel prepare payload experiments to test and monitor physiological functions in zero gravity. Training refreshers and other types of online help are needed to support personnel in their tasks during mission testing and in flight. Results of a survey of other hypermedia and multimedia developers and lessons learned by the developer of the LSPD prototype module are presented. Related issues and future applications are also discussed and further hypermedia development within the LSPD is recommended

    Concept of heat treatment and reversed hot strip rolling of magnesium

    Full text link
    The production of magnesium strips, based on a twin-roll casting (TRC) and Hot Strip Rolling, has a promising application especially in automobile industry. Recently, the TRC line extends by further rolling mills to produce strips with fewer thicknesses. The additional rolling requires re-heating of the TRC strip coil to improve the deformation properties. The heating process affects the microstructure and final properties of the strips. Therefore, it is important to control the heat treatment process. The aim of this study is to create a bundle of models to calculate the temperature development in process of magnesium strip production. The first model calculates the temperature distribution in the TRC magnesium coils during pre-heating process and after rolling. Furthermore, the extend first model will be included into the Hot Strip Rolling in order to analyze a temperature condition in coil during the rolling process. Additionally, in this modelthe microstructure influencing by deformation and heat treatment process will be furtherincluded. In this article, the concept of the model and current state of the work will be defined

    Prompt Beta Spectroscopy as a Diagnostic for Mix in Ignited NIF Capsules

    Full text link
    The National Ignition Facility (NIF) technology is designed to drive deuterium-tritium (DT) internal confinement fusion (ICF) targets to ignition using indirect radiation from laser beam energy captured in a hohlraum. Hydrodynamical instabilities at interfaces in the ICF capsule leading to mix between the DT fue l and the ablator shell material are of fundamental physical interest and can affect the performance characteristics of the capsule. In this Letter we describe new radiochemical diagnostics for mix processes in ICF capsules with plastic or Be (0.9%Cu) ablator shells. Reactions of high-energy tritons with shell material produce high-energy β\beta-emitters. We show that mix between the DT fuel and the shell material enhances high-energy prompt beta emission from these reactions by more than an order of magnitude over that expected in the absence of mix

    Subcentimeter depth resolution using a single-photon counting time-of-flight laser ranging system at 1550 nm wavelength

    Get PDF
    We demonstrate subcentimeter depth profiling at a stand off distance of 330m using a time-of-flight approach based on time-correlated single-photon counting. For the first time to our knowledge, the photon-counting time-of-flight technique was demonstrated at a wavelength of 1550nm using a superconducting nanowire single-photon detector. The performance achieved suggests that a system using superconducting detectors has the potential for low-light-level and eye-safe operation. The system’s instrumental response was 70ps full width at half-maximum, which meant that 1cm surface-to-surface resolution could be achieved by locating the centroids of each return signal. A depth resolution of 4mm was achieved by employing an optimized signal-processing algorithm based on a reversible jump Markov chain Monte Carlo method

    Microwave Response of V3Si Single Crystals: Evidence for Two-Gap Superconductivity

    Full text link
    The investigation of the temperature dependences of microwave surface impedance and complex conductivity of V3Si single crystals with different stoichiometry allowed to observe a number of peculiarities which are in remarkable contradiction with single-gap Bardeen-Cooper-Schrieffer theory. At the same time, they can be well described by two-band model of superconductivity, thus strongly evidencing the existence of two distinct energy gaps with zero-temperature values Delta1~1.8Tc and Delta2~0.95Tc in V3Si.Comment: Submitted to Europhysics Letter

    The Entropy Function for the Black Holes of Nariai Class

    Full text link
    Based on the fact that the near horizon geometry of the extremal Schwarzschild-de Sitter black holes is Nariai geometry, we define the black holes of Nariai class as the configuration whose near-horizon geometry is factorized as two dimensional de Sitter space-time and some compact topology, that is Nariai geometry. We extend the entropy function formalism to the case of the black holes of Nariai class. The conventional entropy function (for the extremal black holes) is defined as Legendre transformation of Lagrangian density, thus the `Routhian density', over two dimensional anti-de Sitter. As for the black holes of Nariai class, it is defined as {\em minus} `Routhian density' over two dimensional de Sitter space-time. We found an exact agreement of the result with Bekenstein-Hawking entropy. The higher order corrections are nontrivial only when the space-time dimension is over four, that is, d>4d>4. There is a subtlety as regards the temperature of the black holes of Nariai class. We show that in order to be consistent with the near horizon geometry, the temperature should be non-vanishing despite the extremality of the black holes.Comment: references added, compatible with the published versio

    First Astronomical Application of a Cryogenic TES Spectrophotometer

    Get PDF
    We report on the first astronomical observations with a photon counting pixel detector that provides arrival time- (delta t = 100ns) and energy- (delta E_gamma < 0.15eV) resolved measurements from the near IR through the near UV. Our test observations were performed by coupling this Transition Edge Sensor (TES) device to a 0.6m telescope; we have obtained the first simultaneous optical near-IR phase-resolved spectra of the Crab pulsar. A varying infrared turnover gives evidence of self-absorption in the pulsar plasma. The potential of such detectors in imaging arrays from a space platform are briefly described.Comment: 4 pages, 5 figure
    corecore