387 research outputs found

    Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati-Benioff zones

    Get PDF
    International audienceDouble Wadati-Benioff seismic zones (DSZ) with two parallel planes of seismicity separated by 15-30 km are a global feature of subduction zones in the 50-200 km depth range. Upper plane seismicity is generally attributed to dehydration of the oceanic crust but the origin of the lower seismicity plane is debated. Serpentine or hydrous-phase dehydration embrittlement is a commonly advocated mechanism that implies significant slab mantle hydration. High-resolution seismic tomography revealed low seismic velocities in the lower seismicity plane that are better explained by seismic anisotropy of anhydrous deformed peridotites than by serpentinization. Earthquakes correlate with anisotropic planar shear zones and favor a shear instability mechanism as the cause of lower plane seismicity without requiring the presence of water in the center of subducting slabs. The contribution of the subducted lithospheric mantle to the water budget of subduction zones is thus likely limited to the first 2-3 kilometers beneath oceanic crust

    3-D Kinematics of Water Masers in the W51A Region

    Full text link
    We report proper motion measurements of water masers in the massive-star forming region W51A and the analyses of the 3-D kinematics of the masers in three maser clusters of W51A (W51 North, Main, and South). In W~51 North, we found a clear expanding flow that has an expansion velocity of ~70 km/s and indicates deceleration. The originating point of the flow coincides within 0.1 as with a silicon-monoxide maser source near the HII region W~51d. In W51 Main, no systematic motion was found in the whole velocity range (158 km/s =< V(lsr) =< -58 km/s) although a stream motion was reported previously in a limited range of the Doppler velocity (54 km/s =< V(lsr) =< 68 kms). Multiple driving sources of outflows are thought to explain the kinematics of W51 Main. In W51 South, an expansion motion like a bipolar flow was marginally visible. Analyses based on diagonalization of the variance-covariance matrix of maser velocity vectors demonstrate that the maser kinematics in W51 North and Main are significantly tri-axially asymmetric. We estimated a distance to W51 North to be 6.1 +/- 1.3 kpc on the basis of the model fitting method adopting a radially expanding flow.Comment: 20 pages, 8 figures, 8 tables, appear in the NRO report No. 564 (ftp://ftp.nro.nao.ac.jp/nroreport/PASJ-W51.pdf) and will appear in Publ. Astron. Soc. Japan, Vol. 54, No. 5 (10/25 issue
    corecore