1,913 research outputs found
Development of mathematical models of environmental physiology
Selected articles concerned with mathematical or simulation models of human thermoregulation are presented. The articles presented include: (1) development and use of simulation models in medicine, (2) model of cardio-vascular adjustments during exercise, (3) effective temperature scale based on simple model of human physiological regulatory response, (4) behavioral approach to thermoregulatory set point during exercise, and (5) importance of skin temperature in sweat regulation
Incrementally Computing Minimal Unsatisfiable Cores of QBFs via a Clause Group Solver API
We consider the incremental computation of minimal unsatisfiable cores (MUCs)
of QBFs. To this end, we equipped our incremental QBF solver DepQBF with a
novel API to allow for incremental solving based on clause groups. A clause
group is a set of clauses which is incrementally added to or removed from a
previously solved QBF. Our implementation of the novel API is related to
incremental SAT solving based on selector variables and assumptions. However,
the API entirely hides selector variables and assumptions from the user, which
facilitates the integration of DepQBF in other tools. We present implementation
details and, for the first time, report on experiments related to the
computation of MUCs of QBFs using DepQBF's novel clause group API.Comment: (fixed typo), camera-ready version, 6-page tool paper, to appear in
proceedings of SAT 2015, LNCS, Springe
Genetic recombination is targeted towards gene promoter regions in dogs
The identification of the H3K4 trimethylase, PRDM9, as the gene responsible
for recombination hotspot localization has provided considerable insight into
the mechanisms by which recombination is initiated in mammals. However,
uniquely amongst mammals, canids appear to lack a functional version of PRDM9
and may therefore provide a model for understanding recombination that occurs
in the absence of PRDM9, and thus how PRDM9 functions to shape the
recombination landscape. We have constructed a fine-scale genetic map from
patterns of linkage disequilibrium assessed using high-throughput sequence data
from 51 free-ranging dogs, Canis lupus familiaris. While broad-scale properties
of recombination appear similar to other mammalian species, our fine-scale
estimates indicate that canine highly elevated recombination rates are observed
in the vicinity of CpG rich regions including gene promoter regions, but show
little association with H3K4 trimethylation marks identified in spermatocytes.
By comparison to genomic data from the Andean fox, Lycalopex culpaeus, we show
that biased gene conversion is a plausible mechanism by which the high CpG
content of the dog genome could have occurred.Comment: Updated version, with significant revision
Measurement of the Absolute Differential Cross Section for np Elastic Scattering at 194 MeV
A tagged medium-energy neutron beam has been used in a precise measurement of
the absolute differential cross section for np back-scattering. The results
resolve significant discrepancies within the np database concerning the angular
dependence in this regime. The experiment has determined the absolute
normalization with 1.5% uncertainty, suitable to verify constraints of
supposedly comparable precision that arise from the rest of the database in
partial wave analyses. The analysis procedures, especially those associated
with evaluation of systematic errors in the experiment, are described in detail
so that systematic uncertainties may be included in a reasonable way in
subsequent partial wave analysis fits incorporating the present results.Comment: 22 pages, 21 figures, submitted for publication in Physical Review
Measurement of the Absolute np Scattering Differential Cross Section at 194 MeV
We describe a double-scattering experiment with a novel tagged neutron beam
to measure differential cross sections for np back-scattering to better than 2%
absolute precision. The measurement focuses on angles and energies where the
cross section magnitude and angle-dependence constrain the charged pion-nucleon
coupling constant, but existing data show serious discrepancies among
themselves and with energy-dependent partial wave analyses (PWA). The present
results are in good accord with the PWA, but deviate systematically from other
recent measurements.Comment: 4 pages, 4 figure
- …