116 research outputs found

    Genome Sequence of \u3cem\u3eBacillus\u3c/em\u3e Phage Saddex

    Get PDF
    The complete genome of Bacillus phage Saddex was determined and annotated in this study. Saddex has distinct sections with similarities to other Bacillus phages, such as Kida, even though these phages were isolated more than 800 km apart by separate laboratories

    Intensive phonological rehabilitation of anomia in four individuals with aphasia

    Get PDF
    The purpose of this paper is to present data from 4 individuals who participated in a 60-hour phonological rehabilitation trial for word retrieval deficits.  The treatment is based on the notion that phonological representations are distributed across acoustic, semantic, orthographic and articulatory motor representations.  So, through the application of a multi-modality (orthographic, acoustic, tactile, visual, articulatory motor) treatment, phonemes and phoneme sequences will be reinstantiated in the neural network resulting in improved activation of lexical-semantic knowledge and word retrieval abilities.  Results showed treatment effects in all 4 individuals and generalization to untrained stimuli in 2 individuals

    Intensive phonomotor rehabilitaiton of anomia in seventeen individuals with aphasia

    Get PDF
    The purpose of this Phase II clinical rehabilitation research is to investigate whether a phonological treatment, which uses real- and non-words comprised of low phonotactic probability and high neighborhood density phoneme sequences, will improve word retrieval in 30 subjects with left hemisphere lesion and aphasia. The short term objective, and purpose of this CAC presentation, is to present data from the large scale trial from 17 individuals who have completed the intensive treatment program. The treatment program is a logical advance on existing Phase I and Phase II clinical rehabilitation work (Kendall et al 2003, Kendall et al 2006a, Kendall et al 2006b, Kendall et al 2006c, Kendall et al 2008) and is motivated by an interactive activation model (Dell, 1986) and parallel distributed processing model of phonology (Nadeau, 2001)

    Adult Environmental Education and the Cultural Commons: A Study of Community Practices for a Just and Sustainable World

    Get PDF
    Ecojustice adult education, an extension of adult environmental education, has been spurred on by international efforts to educate adults about environmental issues. It is a new and evolving arm of the adult education field that studies the ways that dominant views are impacting human/earth relationships. Ecojustice education teaches about the natural and cultural commons that sustain all life. In this symposiusm, doctoral students investigated their own communities to find examples of the cultural commons

    Apobec1 complementation factor overexpression promotes hepatic steatosis, fibrosis, and hepatocellular cancer

    Get PDF
    The RNA-binding protein Apobec1 complementation factor (A1CF) regulates posttranscriptional ApoB mRNA editing, but the range of RNA targets and the long-term effect of altered A1CF expression on liver function are unknown. Here we studied hepatocyte-specific A1cf-transgenic (A1cf+/Tg), A1cf+/Tg Apobec1-/-, and A1cf-/- mice fed chow or high-fat/high-fructose diets using RNA-Seq, RNA CLIP-Seq, and tissue microarrays from human hepatocellular cancer (HCC). A1cf+/Tg mice exhibited increased hepatic proliferation and steatosis, with increased lipogenic gene expression (Mogat1, Mogat2, Cidea, Cd36) associated with shifts in polysomal RNA distribution. Aged A1cf+/Tg mice developed spontaneous fibrosis, dysplasia, and HCC, and this development was accelerated on a high-fat/high-fructose diet and was independent of Apobec1. RNA-Seq revealed increased expression of mRNAs involved in oxidative stress (Gstm3, Gpx3, Cbr3), inflammatory response (Il19, Cxcl14, Tnfα, Ly6c), extracellular matrix organization (Mmp2, Col1a1, Col4a1), and proliferation (Kif20a, Mcm2, Mcm4, Mcm6), and a subset of mRNAs (including Sox4, Sox9, Cdh1) were identified in RNA CLIP-Seq. Increased A1CF expression in human HCC correlated with advanced fibrosis and with reduced survival in a subset with nonalcoholic fatty liver disease. In conclusion, we show that hepatic A1CF overexpression selectively alters polysomal distribution and mRNA expression, promoting lipogenic, proliferative, and inflammatory pathways leading to HCC

    Heterogeneity of Ara h Component-Specific CD4 T Cell Responses in Peanut-Allergic Subjects

    Get PDF
    Understanding the peanut-specific CD4 T cell responses in peanut-allergic (PA) subjects should provide new insights into the development of innovative immunotherapies for the treatment of peanut allergy. Although peanut-specific CD4 T cells have a TH2 profile in PA subjects, the immunogenicity of different Ara h components in eliciting specific CD4 T cell responses and the heterogeneity of these Ara h-reactive TH2 cells remains unclear. In this study, we investigated Ara h 1, 2, 3, 6, and 8-specific T cell responses in PA and sensitized non-peanut-allergic (sNPA) subjects, using the CD154 upregulation assay and the class II tetramer technology. In the PA group, T cells directed against Ara h 1, 2, 3, and 6 have a heterogeneous TH2 phenotype characterized by differential expression of CRTH2, CD27, and CCR6. Reactivity toward these different components was also distinct for each PA subject. Two dominant Ara h 2 epitopes associated with DR1501 and DR0901 were also identified. Frequencies of Ara h-specific T cell responses were also linked to the peanut specific-IgE level. Conversely, low peanut-IgE level in sNPA subjects was associated with a weak or an absence of the allergen-specific T cell reactivity. Ara h 8-specific T cell reactivity was weak in both PA and sNPA subjects. Thus, peanut-IgE level was associated with a heterogeneous Ara h (but not Ara h 8)-specific T cell reactivity only in PA patients. This suggests an important immunogenicity of each Ara h 1, 2, 3, and 6 in inducing peanut allergy. Targeting Ara h 1-, 2-, 3-, and 6-specific effector-TH2 cells can be the future way to treat peanut allergy

    Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model

    Get PDF
    Osteogenesis imperfecta (OI) is a heritable form of bone fragility typically associated with a dominant COL1A1 or COL1A2 mutation. Variable phenotype for OI patients with identical collagen mutations is well established, but phenotype variability is described using the qualitative Sillence classification. Patterning a new OI mouse model on a specific collagen mutation therefore has been hindered by the absence of an appropriate kindred with extensive quantitative phenotype data. We benefited from the large sibships of the Old Order Amish (OOA) to define a wide range of OI phenotypes in 64 individuals with the identical COL1A2 mutation. Stratification of carrier spine (L1–4) areal bone mineral density (aBMD) Z -scores demonstrated that 73% had moderate to severe disease (less than −2), 23% had mild disease (−1 to −2), and 4% were in the unaffected range (greater than −1). A line of knock-in mice was patterned on the OOA mutation. Bone phenotype was evaluated in four F 1 lines of knock-in mice that each shared approximately 50% of their genetic background. Consistent with the human pedigree, these mice had reduced body mass, aBMD, and bone strength. Whole-bone fracture susceptibility was influenced by individual genomic factors that were reflected in size, shape, and possibly bone metabolic regulation. The results indicate that the G610C OI (Amish) knock-in mouse is a novel translational model to identify modifying genes that influence phenotype and for testing potential therapies for OI. © 2010 American Society for Bone and Mineral ResearchPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65040/1/90720_ftp.pd

    COVID-19 vaccination in patients receiving allergen immunotherapy (AIT) or biologicals:EAACI recommendations

    Get PDF
    Immune modulation is a key therapeutic approach for allergic diseases, asthma and autoimmunity. It can be achieved in an antigen-specific manner via allergen immunotherapy (AIT) or in an endotype-driven approach using biologicals that target the major pathways of the type 2 (T2) immune response: immunoglobulin (Ig)E, interleukin (IL)-5 and IL-4/IL-13 or non-type 2 response: anti-cytokine antibodies and B-cell depletion via anti-CD20. Coronavirus disease 2019 (COVID-19) vaccination provides an excellent opportunity to tackle the global pandemics and is currently being applied in an accelerated rhythm worldwide. The vaccine exerts its effects through immune modulation, induces and amplifies the response against the severe acute respiratory syndrome coronavirus (SARS-CoV-2). Thus, as there may be a discernible interference between these treatment modalities, recommendations on how they should be applied in sequence are expected. The European Academy of Allergy and Clinical Immunology (EAACI) assembled an expert panel under its Research and Outreach Committee (ROC). This expert panel evaluated the evidence and have formulated recommendations on the administration of COVID-19 vaccine in patients with allergic diseases and asthma receiving AIT or biologicals. The panel also formulated recommendations for COVID-19 vaccine in association with biologicals targeting the type 1 or type 3 immune response. In formulating recommendations, the panel evaluated the mechanisms of COVID-19 infection, of COVID-19 vaccine, of AIT and of biologicals and considered the data published for other anti-infectious vaccines administered concurrently with AIT or biologicals
    corecore