95 research outputs found

    Mechanotransduction of mitochondrial AMPK and its distinct role in flow-induced breast cancer cell migration

    Get PDF
    The biophysical microenvironment of the tumor site has significant impact on breast cancer progression and metastasis. The importance of altered mechanotransduction in cancerous tissue has been documented, yet its role in the regulation of cellular metabolism and the potential link between cellular energy and cell migration remain poorly understood. In this study, we investigated the role of mechanotransduction in AMP-activated protein kinase (AMPK) activation in breast cancer cells in response to interstitial fluid flow (IFF). Additionally, we explored the involvement of AMPK in breast cancer cell migration. IFF was applied to the 3D cell-matrix construct. The subcellular signaling activity of Src, FAK, and AMPK was visualized in real-time using fluorescent resonance energy transfer (FRET). We observed that breast cancer cells (MDA-MB-231) are more sensitive to IFF than normal epithelial cells (MCF-10A). AMPK was activated at the mitochondria of MDA-MB-231 cells by IFF, but not in other subcellular compartments (i.e., cytosol, plasma membrane, and nucleus). The inhibition of FAK or Src abolished flow-induced AMPK activation in the mitochondria of MDA-MB-231 cells. We also observed that global AMPK activation reduced MDA-MB-231 cell migration. Interestingly, specific AMPK inhibition in the mitochondria reduced cell migration and blocked flow-induced cell migration. Our results suggest the linkage of FAK/Src and mitochondria-specific AMPK in mechanotransduction and the differential role of AMPK in breast cancer cell migration depending on its subcellular compartment-specific activation

    Effects of mechanical forces on cytoskeletal remodeling and stiffness of cultured smooth muscle cells

    Get PDF
    The cytoskeleton is a diverse, multi-protein framework that plays a fundamental role in many cellular activities including mitosis, cell division, intracellular transport, cell motility, muscle contraction, and the regulation of cell polarity and organization. Furthermore, cytoskeletal filaments have been implicated in the pathogenesis of a wide variety of diseases including cancer, blood disease, cardiovascular disease, inflammatory disease, neurodegenerative disease, and problems with skin, nail, cornea, hair, liver and colon. Increasing evidence suggests that the distribution and organization of the cytoskeleton in living cells are affected by mechanical stresses and the cytoskeleton determines cell stiffness. We developed a fully nonlinear, constrained mixture model for adherent cells that allows one to account separately for the contributions of the primary structural constituents of the cytoskeleton and extended a prior solution from the finite elasticity literature for use in a sub-class of atomic force microscopy (AFM) studies of cell mechanics. The model showed that the degree of substrate stretch and the geometry of the AFM tip dramatically affect the measured cell stiffness. Consistent with previous studies, the model showed that disruption of the actin filaments can reduce the stiffness substantially, whereas there can be little contribution to the overall cell stiffness by the microtubules or intermediate filaments. To investigate the effect of mechanical stretching on cytoskeletal remodeling and cell stiffness, we developed a simple cell-stretching device that can be combined with an AFM and confocal microscopy. Results demonstrate that cyclic stretching significantly and rapidly alters both cell stiffness and focal adhesion associated vinculin and paxillin, suggesting that focal adhesion remodeling plays a critical role in cell stiffness by recruiting and anchoring F-actin. Finally, we estimated cytoskeletal remodeling by synthesizing data on stretch-induced dynamic changes in cell stiffness and focal adhesion area using constrained mixture approach. Results suggest that the acute increase in stiffness in response to an increased cyclic stretch was probably due to an increased stretch of the original filaments whereas the subsequent decrease back towards normalcy was consistent with a replacement of the highly stretched original filaments with less stretched new filaments

    DIFFERENTIAL RHOA ACTIVITY IN CHONDROCYTES UNDER FLOW

    Get PDF
    poster abstractMechanical force environment is a major factor that influences cellular homeostasis and remodeling. The prevailing wisdom in this field demon-strated that a threshold of mechanical forces or deformation was required to affect cell signaling. However, we hypothesized that RhoA activities can be either elevated or reduced by selecting different levels of shear stress inten-sities. To test this hypothesis, a fluorescence resonance energy transfer (FRET)-based approach was used. The result revealed that C28/I2 chondro-cytes exhibited an increase in RhoA activities in response to high shear stress (10 or 20 dyn/cm2), while they showed a decrease in their RhoA activ-ities to intermediate shear stress at 5 dyn/cm2. No changes were observed under low shear stress (2 dyn/ cm2). The observed two-level switch of RhoA activities was closely linked to the shear stress-induced alterations in actin cytoskeleton and traction forces. In the presence of constitutively active RhoA (RhoA-V14), intermediate shear stress suppressed RhoA activities, while high shear stress failed to activate them. Collectively, these results here suggest that intensities of shear stress are critical in differential activa-tion and inhibition of RhoA activities in chondrocytes

    STIFFNESS OF 3D COLLAGEN MATRICES REGULATES CDC42 ACTIVITY OF ENDOTHELIAL COLONY FORMING CELLS DURING EARLY VACUOLE

    Get PDF
    poster abstractRecent preclinical reports have provided evidence that endothelial colony forming cells (ECFCs), a subset of endothelial progenitor cells, significantly improve vessel formation, largely due to their robust vasculogenic potential. While it has been known that the Rho family GTPase Cdc42 is involved in this ECFC-driven vessel formation process, the effect of extracellular matrix (ECM) stiffness on its activity during vessel formation is largely unknown. Using a fluorescence resonance energy transfer (FRET)-based Cdc42 biosen-sor, we examined the spatio-temporal activity of Cdc42 of ECFCs in three-dimensional (3D) collagen matrices with varying stiffness. The result re-vealed that ECFCs exhibited an increase in Cdc42 activity in a soft (150 Pa) matrix, while they were much less responsive in a stiff (1000 Pa) matrix. In both soft and stiff matrices, Cdc42 was highly activated near vacuoles; how-ever, its activity is higher in a soft matrix than that in a stiff matrix. The ob-served Cdc42 activity was closely associated with vacuole area. Soft matri-ces induced higher Cdc42 activity, faster vacuole formation, and larger vac-uole area than stiff matrices. Time courses of Cdc42 activity and vacuole formation data revealed that Cdc42 activity proceeds vacuole formation. Collectively, these results suggest that matrix stiffness is critical in regulat-ing Cdc42 activity in ECFCs and its activation is an important step in early vacuole formation

    Structure-Property Relationship of Amyloidogenic Prion Nanofibrils

    Get PDF
    The structure and its property for the prion nanofibrils, which exhibit self-assembled steric zipper, amyloid fibrils, are described in this chapter. There is the belief of origin for the infectiousness of the prion can be its molecular structure. It is due to the amyloid toxicity, which is related to its beta sheet rich molecular structure and self-aggregated long fibrils. There is evidence that the difference between PrPc and PrPsc is transitioned beta sheet from alpha helix to self-assemble and then to the amyloidogenic fibrils. Therefore, the scope of this chapter is the amyloidogenic structural characteristics of prion fibrils and its relationship to the property. The molecular structural characteristics can be changed by properties such as affinity, toxicity, infectivity, and so on, so this is a key factor to understand the origin of prion disease and develop the therapeutic strategy. One of the main properties of amyloid fibrils that we want to describe here is mechanical property such as dynamic property and material property for prion nanofibrils. This chapter can shed light on understanding the infectious characteristics of prion and the relationship of its molecular structures

    Rapid Activation of Rac GTPase in Living Cells by Force Is Independent of Src

    Get PDF
    It is well known that mechanical forces are crucial in regulating functions of every tissue and organ in a human body. However, it remains unclear how mechanical forces are transduced into biochemical activities and biological responses at the cellular and molecular level. Using the magnetic twisting cytometry technique, we applied local mechanical stresses to living human airway smooth muscle cells with a magnetic bead bound to the cell surface via transmembrane adhesion molecule integrins. The temporal and spatial activation of Rac, a small guanosine triphosphatase, was quantified using a fluorescent resonance energy transfer (FRET) method that measures changes in Rac activity in response to mechanical stresses by quantifying intensity ratios of ECFP (enhanced cyan fluorescent protein as a donor) and YPet (a variant yellow fluorescent protein as an acceptor) of the Rac biosensor. The applied stress induced rapid activation (less than 300 ms) of Rac at the cell periphery. In contrast, platelet derived growth factor (PDGF) induced Rac activation at a much later time (>30 sec). There was no stress-induced Rac activation when a mutant form of the Rac biosensor (RacN17) was transfected or when the magnetic bead was coated with transferrin or with poly-L-lysine. It is known that PDGF-induced Rac activation depends on Src activity. Surprisingly, pre-treatment of the cells with specific Src inhibitor PP1 or knocking-out Src gene had no effects on stress-induced Rac activation. In addition, eliminating lipid rafts through extraction of cholesterol from the plasma membrane did not prevent stress-induced Rac activation, suggesting a raft-independent mechanism in governing the Rac activation upon mechanical stimulation. Further evidence indicates that Rac activation by stress depends on the magnitudes of the applied stress and cytoskeletal integrity. Our results suggest that Rac activation by mechanical forces is rapid, direct and does not depend on Src activation. These findings suggest that signaling pathways of mechanical forces via integrins might be fundamentally different from those of growth factors

    eIF2α signaling regulates autophagy of osteoblasts and the development of osteoclasts in OVX mice

    Get PDF
    Bone loss in postmenopausal osteoporosis is induced chiefly by an imbalance of bone-forming osteoblasts and bone-resorbing osteoclasts. Salubrinal is a synthetic compound that inhibits de-phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α). Phosphorylation of eIF2α alleviates endoplasmic reticulum (ER) stress, which may activate autophagy. We hypothesized that eIF2α signaling regulates bone homeostasis by promoting autophagy in osteoblasts and inhibiting osteoclast development. To test the hypothesis, we employed salubrinal to elevate the phosphorylation of eIF2α in an ovariectomized (OVX) mouse model and cell cultures. In the OVX model, salubrinal prevented abnormal expansion of rough ER and decreased the number of acidic vesiculars. It regulated ER stress-associated signaling molecules such as Bip, p-eIF2α, ATF4 and CHOP, and promoted autophagy of osteoblasts via regulation of eIF2α, Atg7, LC3, and p62. Salubrinal markedly alleviated OVX-induced symptoms such as reduction of bone mineral density and bone volume fraction. In primary bone-marrow-derived cells, salubrinal increased the differentiation of osteoblasts, and decreased the formation of osteoclasts by inhibiting nuclear factor of activated T-cells cytoplasmic 1 (NFATc1). Live cell imaging and RNA interference demonstrated that suppression of osteoclastogenesis is in part mediated by Rac1 GTPase. Collectively, this study demonstrates that ER stress-autophagy axis plays an important role in OVX mice. Bone-forming osteoblasts are restored by maintaining phosphorylation of eIF2α, and bone-resorbing osteoclasts are regulated by inhibiting NFATc1 and Rac1 GTPase

    Matrix rigidity regulates spatiotemporal dynamics of Cdc42 activity and vacuole formation kinetics of endothelial colony forming cells

    Get PDF
    Recent evidence has shown that endothelial colony forming cells (ECFCs) may serve as a cell therapy for improving blood vessel formation in subjects with vascular injury, largely due to their robust vasculogenic potential. The Rho family GTPase Cdc42 is known to play a primary role in this vasculogenesis process, but little is known about how extracellular matrix (ECM) rigidity affects Cdc42 activity during the process. In this study, we addressed two questions: Does matrix rigidity affect Cdc42 activity in ECFC undergoing early vacuole formation? How is the spatiotemporal activation of Cdc42 related to ECFC vacuole formation? A fluorescence resonance energy transfer (FRET)-based Cdc42 biosensor was used to examine the effects of the rigidity of three-dimensional (3D) collagen matrices on spatiotemporal activity of Cdc42 in ECFCs. Collagen matrix stiffness was modulated by varying the collagen concentration and therefore fibril density. The results showed that soft (150 Pa) matrices induced an increased level of Cdc42 activity compared to stiff (1 kPa) matrices. Time-course imaging and colocalization analysis of Cdc42 activity and vacuole formation revealed that Cdc42 activity was colocalized to the periphery of cytoplasmic vacuoles. Moreover, soft matrices generated faster and larger vacuoles than stiff matrices. The matrix-driven vacuole formation was enhanced by a constitutively active Cdc42 mutant, but significantly inhibited by a dominant-negative Cdc42 mutant. Collectively, the results suggest that matrix rigidity is a strong regulator of Cdc42 activity and vacuole formation kinetics, and that enhanced activity of Cdc42 is an important step in early vacuole formation in ECFCs

    Fluid flow-induced activation of subcellular AMPK and its interaction with FAK and Src

    Get PDF
    AMP-activated protein kinase (AMPK) is a metabolic energy sensor that plays a critical role in cancer cell survival and growth. While the physical microenvironment is believed to influence tumor growth and progression, its role in AMPK regulation remains largely unknown. In the present study, we evaluated AMPK response to mechanical forces and its interaction with other mechano-responsive signaling proteins, FAK and Src. Using genetically encoded biosensors that can detect AMPK activities at different subcellular locations (cytosol, plasma membrane, nucleus, mitochondria, and Golgi apparatus), we observed that AMPK responds to shear stress in a subcellular location-dependent manner in breast cancer cells (MDA-MB-231). While normal epithelial cells (MCF-10A) also similarly responded to shear stress, they are less sensitive to shear stress compared to MDA-MB-231 cells. Inhibition of FAK and Src significantly decreased the basal activity level of AMPK at all five subcellular locations in MDA-MB-231 cells and selectively blocked shear stress-induced AMPK activation. Moreover, testing with cytoskeletal drugs revealed that myosin II might be the critical mediator of shear stress-induced AMPK activation in MDA-MB-231 cells. These findings suggest that breast cancer cells and normal epithelial cells may have different mechanosensitivity in AMPK signaling and that FAK and Src as well as the myosin II-dependent signaling pathway are involved in subcellular AMPK mechanotransduction in breast cancer cells
    • …
    corecore