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ABSTRACT 
 
 

Effects of Mechanical Forces on Cytoskeletal Remodeling  
 

and Stiffness of Cultured Smooth Muscle Cells. (May 2006) 
 

Sungsoo Na, B.S., Pukyong National University; 
 

M.S., Pusan National University 
 

Chair of Advisory Committee: Dr. Jay D. Humphrey 
 
 

The cytoskeleton is a diverse, multi-protein framework that plays a fundamental 

role in many cellular activities including mitosis, cell division, intracellular transport, 

cell motility, muscle contraction, and the regulation of cell polarity and organization. 

Furthermore, cytoskeletal filaments have been implicated in the pathogenesis of a wide 

variety of diseases including cancer, blood disease, cardiovascular disease, inflammatory 

disease, neurodegenerative disease, and problems with skin, nail, cornea, hair, liver and 

colon. Increasing evidence suggests that the distribution and organization of the 

cytoskeleton in living cells are affected by mechanical stresses and the cytoskeleton 

determines cell stiffness.  

We developed a fully nonlinear, constrained mixture model for adherent cells 

that allows one to account separately for the contributions of the primary structural 

constituents of the cytoskeleton and extended a prior solution from the finite elasticity 

literature for use in a sub-class of atomic force microscopy (AFM) studies of cell 

mechanics. The model showed that the degree of substrate stretch and the geometry of 

the AFM tip dramatically affect the measured cell stiffness. Consistent with previous 
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studies, the model showed that disruption of the actin filaments can reduce the stiffness 

substantially, whereas there can be little contribution to the overall cell stiffness by the 

microtubules or intermediate filaments. To investigate the effect of mechanical 

stretching on cytoskeletal remodeling and cell stiffness, we developed a simple cell-

stretching device that can be combined with an AFM and confocal microscopy. Results 

demonstrate that cyclic stretching significantly and rapidly alters both cell stiffness and 

focal adhesion associated vinculin and paxillin, suggesting that focal adhesion 

remodeling plays a critical role in cell stiffness by recruiting and anchoring F-actin. 

Finally, we estimated cytoskeletal remodeling by synthesizing data on stretch-induced 

dynamic changes in cell stiffness and focal adhesion area using constrained mixture 

approach. Results suggest that the acute increase in stiffness in response to an increased 

cyclic stretch was probably due to an increased stretch of the original filaments whereas 

the subsequent decrease back towards normalcy was consistent with a replacement of the 

highly stretched original filaments with less stretched new filaments. 
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CHAPTER I 

INTRODUCTION 

 

Mechanical stimuli on cells, including fluid-induced shear or matrix-induced 

stretch, can affect signal transduction and altered gene expression, which in turn alter 

migration, proliferation, adhesion, and host of other cellular responses (Goldschmidt et 

al., 2001; Li and Xu, 2000; Reusch et al., 1996; Kim et al., 1999; Sumpio et al., 1987). 

These functional alterations are mediated through changes in the intracellular structure 

known as the cytoskeleton (CSK), which is responsible for the structured integrity and 

mechanical links between the nucleus and surface adhesion receptors. Increasing 

evidence suggests that the distribution and organization of the CSK in living cells are 

affected by mechanical stresses (Smith et al., 1997; Galbraith et al., 1998; Takemasa et 

al., 1998; Wang et al., 2000, 2001; Hayakawa et al., 2001; Costa et al., 2002; Yoshigi et 

al., 2003). For example, using western blots showed that stretching the vascular wall 

induces actin filament (F-actin) polymerization in smooth muscle cells (Albinsson et al., 

2004). Using similar methods, Cunningham et al. (2002) quantified focal contact 

associated proteins in smooth muscle cells subjected to cyclic strain, and suggested that 

insoluble levels of focal contact components are altered rapidly following an appropriate 

number of mechanical perturbations.  

It is generally accepted that the CSK is the major determinant of cell stiffness, 

particularly the F-actin (Wu et al., 1998a; Smith et al., 2003; Huang et al., 2005).  In 

                                                 
  This dissertation follows the style of Journal of Biomechanics. 
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particular, disrupting the F-actin network with cytochalasin D reduces cell stiffness by 

~50%. In contrast, glutaraldehyde (a common histological fixative) increases cell 

stiffness up to three fold by increasing the degree of crosslinking between F-actin and 

the rest of the CSK network (Wu et al., 1998a). In focal adhesions (FAs), F-actin is 

linked to transmembrane proteins called integrins via a variety of proteins, including 

paxillin and vinculin. Goldmann et al. (1998) showed, for example, that the stiffness of 

vinculin-deficient cells was lower than that of wild-type cells; when vinculin expression 

was reinstated by transfer of the gene encoding vinculin, cell stiffness was attained close 

to that of the wild-type cells. These results point to a role for vinculin in stabilizing FA 

and transferring mechanical stress from the extracellular matrix (ECM) to the CSK 

network.  

Changes in cellular function due to disease are also often mirrored in the CSK. 

For example, CSK alterations cause capillary clogs in circulatory disorders (Worthen et 

al., 1989); changes in CSK from a rather ordered and stiff structure to a more irregular 

and compliant one during a cell's progression from a fully mature state to a replicating, 

motile, and immortal cancerous cell include a reduction in CSK structure and its 

accessory proteins (Ben-ze’ev, 1985). Clearly, changes in CSK content and structure 

should be reflected in the overall mechanical properties of the cell. Therefore, the 

mechanical properties of certain types of cells may potentially be used to quantitatively 

reflect the state of their CSK structure and health, which could be useful in possible 

applications in clinical diagnostics of certain types of diseases.  
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Mechanical properties of cells have been studied extensively given the recent 

development of experimental techniques capable of probing and manipulating forces and 

displacements less than a piconewton and a nanometer, respectively. Micropipette 

aspiration has been a prevalent technique (Hochmuth, 2000). Here, the cell is drawn into 

the mouth of the pipette via the stepwise application of an aspiration pressure. This 

pressure is maintained for a specified duration, and the attendant extension of the cell 

into the pipette is monitored via optical microscopy. This permits stress-strain properties 

to be estimated, although the dominant effect is due to the membrane. The microneedle 

technique is another early experimental approach, whereby portions of the cell are 

deformed via a cantilevered probe and displacement is measured optically (Felder and 

Elson, 1990). Thus, this technique is dependent on the stiffness of cantilever and 

optically obtained displacement resolution.  Embedded particle tracking has been used to 

measure traction forces exerted by adherent cells (Munevar et al., 2001; Butler et al., 

2002). Here, fluorescent beads (0.2 µm in diameter) embedded in the gel serve as 

fiduciary markers within a flexible membrane. The displacement of the beads is 

measured optically, and the corresponding traction between the adherent cell and its 

substrate is computed from the given displacement field. Several experimental 

techniques using photon momentum (Ashkin and Dziedzic, 1987) have become popular. 

Optical traps, also called optical tweezers, laser tweezers or laser traps, consist of a laser 

directed at a micrometer-scale object, such as beads or organelles; the laser beam is used 

both to control the position of the bead and to measure the required force. Typically, two 

beads are positioned at opposite ends of the cell. The position of one cell-attached bead 
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is fixed to a stationary glass slide while the opposite cell-attached bead is confined by 

moving the optical trap, the position of which is modulated via the magnitude of the 

laser power. A variation of an optical trap is called an optical stretcher. In this technique, 

two lasers expose diametrically opposite portions of the cell, but are not focused in a 

plane. These unfocused lasers exert net forces due to refraction when a laser beam enters 

and exits the cell surface. Displacement of the cell is measured directly via image 

analysis, and the corresponding force is calculated via geometric ray optics as a function 

of light reflected and total light power.  

Magnets have also been used to apply either a linear force or a twisting torque to 

a particle that is affixed to or embedded in a cell. In the case of a linear force application, 

magnetic beads serve as “grips” which, under electromagnetic field gradients that 

impose a local magnetic force on these beads, impose displacement (Goldschmidt et al., 

2001). An important variation is to apply a magnetic torque (Wang et al, 1993). This 

technique is termed magnetic twisting cytometry. Here, large numbers of magnetic beads 

are coated with ligands chosen specifically to bind to cell surface receptors such as 

integrins that interact with the CSK. After these ligand-coated beads are introduced to 

the cell, a weak magnetic field is applied on the sample to magnetize the beads with a 

specific orientation. When a counterpulse is generated at a much higher magnitude and 

in a different direction, the beads then experience a rotational force and realign with new 

magnetic field. One application of magnetic twisting cytometry has been to estimate the 

storage modulus and loss modulus (within a linear viscoelastic framework) of human 

airway smooth muscle cells (Deng et al., 2004). Finally, atomic force microscopy 
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(AFM) was originally developed as a high-resolution imaging instrument (i.e., sensitive 

profilometer) by monitoring the deflection of a small cantilever probe as its tip raster-

scanned over a sample surface. AFM has become an important tool for mechanobiology 

studies, however, because it can be used in multiple modes in physiologic aqueous 

solutions in conjunction with light and fluorescence microscopy. More recently, AFM 

has been used to estimate a cell stiffness (Rotsch and Radmacher, 2000; Mathur et al., 

2001; Na et al., 2004), to estimate adhesion forces of ligand-receptor pairs (Sun et al., 

2005), to image underlying CSK structures (Kuznetsov et al., 1997), and to study single 

cell calcium signaling in response to mechanical strain (Charras and Horton, 2002).    

Taken together, the mechanical properties of cells and CSK remodeling in 

response to altered mechanical stress have been studied extensively given the recent 

development of techniques capable of probing and manipulating forces and 

displacements less than a piconewton and a nanometer, respectively. Nonetheless, little 

is known about the quantitative relationship between the mechanical properties of cells 

and CSK remodeling.  

Prior mathematical models have been derived using either the continuum 

approach or the microstructural approach (for a review, see Humphrey, 2002; 

Stamenovic and Ingber, 2002). The former treats the cell as comprising constituents with 

certain continuum material properties (e.g., Evans and Yeung, 1989; Schmid-Schönbein 

et al., 1995). On the other hand, microstructural approaches assume the CSK is the main 

structural component. This approach is especially developed for investigating CSK 

mechanics in adherent cells (e.g. Boey et al., 1998; Forgacs, 1995; Satcher and Dewey, 
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1996; Stamenovic et al., 1996). The cortical membrane model depicts a structurally 

significant membrane surrounding a liquid cytoplasm (Evans and Yeung, 1989). It rests 

on the assumption that there is a cortex with a finite thickness and bending rigidity or an 

internal structure on the cytoplasmic side of the plasma membrane which maintains the 

curvature (Schmid-Schönbein et al., 1995), and that mechanical state of the cytoplasm, 

which is a single phase viscoelastic medium, determines the stress distribution in the 

cell. However, this assumption contradicts observations that mechanical stimuli on the 

cell surface are transmitted via molecular connectivity of the CSK. Ingber and 

colleagues suggested that eukaryotic cells display both CSK structure and elastic 

deformability that appear to be consistent with tensegrity where actin filaments and 

intermediate filaments play the role of tension-supporting cables and microtubules and 

actin bundles play the role of compression-supporting struts (Ingber, 1993). They have 

assumed that the cables representing actin filaments and intermediate filaments exhibit a 

linear elastic behavior. Forgacs (1995) employed a percolation theory to propose a 

possible mechanism for intracellular signaling. In a percolation model, the CSK is 

assumed to be interconnected network of actin filaments, microtubules, and intermediate 

filaments. A shortcoming of the percolation model is that it does not take CSK forces 

into consideration. Satcher and Dewey (1996) used an open-cell foam model to estimate 

the contribution of the actin lattice to the elastic behavior of cultured endothelial cells. 

They assumed that CSK forces arise from the deformation of individual CSK filaments 

(i.e. bending) that exhibit a linear elastic response under the action of mechanical 

stresses applied to the cell. Boey et al. (1998) examined three configurations of the 
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erythrocyte CSK using a polymer chain model: stress-free, prestressed, and condensed. 

Fabry et al. (2001) suggest that a sol-gel transition is required to describe dynamic 

properties of the cell: solid-like behavior is needed to maintain structural integrity of the 

cell, but fluid-like behavior is needed during cell movement. They suggest further that 

the effective noise temperature that comes from the physics of soft glassy materials is a 

measure of the CSK deformation and flow. Thus, rather than thinking of the CSK as a 

gel, this model suggests that it should be thought of as a glassy material close to a glass 

transition, and that disorder and metastability may be essential features underlying its 

mechanical functions. Recently, Humphrey (2002a) proposed a fundamentally different 

approach based on the concept of a constrained mixture, which is a microstructurally 

motivated continuum model that allows individual constituents to turnover dynamically. 

This approach allows one to include the separate contributions and distributions of the 

primary CSK filaments and viscous cytosol without having to solve separate balance 

relations for each constituent, to quantify possible momentum exchanges between 

constituents, or to prescribe partial traction boundary conditions which are notoriously 

difficult to identify. Thus, this approach can provide details on locally averaged 

distributions of stresses and strains in cells, which in turn can be useful in determining 

the distribution and transmission of these forces to subcellular components.  

The overall objectives of this study were (a) to develop a constrained-mixture based 

constitutive model for cells that can predict CSK remodeling in response to mechanical 

stimulus, (b) to examine the time course of changes in cell stiffness and CSK remodeling 

in response to mechanical stimulus. To accomplish these goals, we developed a simple 
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cell-stretching device that can be combined with an atomic force microscope and a 

confocal microscope to examine the time course of changes in cell stiffness and CSK 

remodeling, respectively. Next, we used a constrained mixture approach to model CSK 

remodeling by synthesizing AFM data on stretch-induced dynamic changes in cell 

stiffness and confocal microscopy acquired data on changes in FA-related areas.  

Results showed that cyclic stretching significantly and rapidly alters both cell 

stiffness and focal adhesion localization, suggesting that focal adhesion remodeling 

plays a critical role in cell stiffness by recruiting and anchoring F-actin, and the acute 

increase in stiffness in response to an increased cyclic stretch was probably due to an 

increased stretch of the original F-actin whereas the subsequent decrease back towards 

normalcy was consistent with a replacement of the highly stretched original F-acin with 

less stretched new F-actin. 
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CHAPTER II 

ATOMIC FORCE MICROSCOPY AND THE  

CONSTITUTIVE BEHAVIOR OF LIVING CELLS∗ 

 

Introduction 

Among the myriad exciting discoveries of modern biology is the observation that 

many types of cells respond dramatically to changes in their mechanical environment. 

Such cells may alter their orientation, shape, internal constitution, contraction, migration, 

adhesion, synthesis and degradation of extracellular constituents, or even their life cycle 

in response to perturbations in mechanical loading (Zhu et al., 2000). Counted among 

these cell types are the chondrocytes, endothelial cells, epithelial cells, fibroblasts, 

macrophages, myocytes, and osteocytes, to name but a few. Although much has been 

learned about the mechanosensitive responses of living cells, there remains a pressing 

need for quantification and, in particular, for mathematically modeling the 

mechanobiology (Fung, 2002). 

Atomic force microscopy is one of several new technologies that promise to 

increase our understanding of the mechanobiology and biomechanics of living cells 

(Radmacher et al., 1992). Briefly, the atomic force microscope (AFM) is a cantilever-

based scanning probe that can be operated in two primary modes: the constant force 

mode allows the AFM to serve as a highly sensitive profilometer, thus enabling one to 
                                                 
∗ Reprinted with permission from “On atomic force microscopy and the constitutive 
behavior of living cells” by Na,S., Sun, Z., Meininger, G.A., Humphrey, J.D., 2004. 
Biomechanics and Modeling in Mechanobiology, 3, 75-84. Copyright 2004 by Springer-
Verlag. 
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10 µm10 µm
 

 Fig. 2.1. Deflection image of a vascular smooth muscle cell isolated from the rat 
skeletal muscle arterioles. The AFM probe was scanned across the cell surfaces at a 
speed of 40 nm/s, with a tracking force of approximately 400 pN. The image was 
collected using Nanoscope III Software. 

 

map the surface topography of a cell (Fig. 2.1.); the displacement mode allows one to 

perform mechanical tests on cells, particularly local indentation or local pulling 

following adhesion of the probe. The tip of the cantilever largely dictates the resolution 

and ‘sphere of influence’ of the mechanical interrogation. Tips can be micro-fabricated 

to have different sizes and shapes, but many are on the order of 10-50 nm and shaped 

either as a cone or a blunted-cone with a spherical cap. In the displacement mode, 
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common indentations are on the order of 50-500 nm, with the thickness of the cell often 

on the order of 1-3 µm. 

Most AFM-based studies of the mechanical behavior of living cells (e.g., Wu et 

al., 1998a; Rotsch and Radmacher, 2000; Mathur et al., 2001) are interpreted using the 

classical Hertz solution for the indentation of an elastic half-space (e.g., Sneddon, 1965). 

This solution was derived, of course, within the context of the many simplifying 

assumptions of classical elasticity: linear elastic behavior, material uniformity and 

homogeneity, isotropy, and infinitesimal strains. Few of these assumptions apply to 

living cells or the associated test conditions (Costa and Yin, 1999). Rather, cells are 

materially nonuniform, consisting of multiple families of structurally important and 

highly organized proteins that may exhibit a nonlinear behavior over finite deformations 

(e.g., see Janmey et al., 1991; Liu and Pollack, 2002). The goal of this work, therefore, is 

two-fold: to present a new nonlinear constitutive model for cells that accounts for their 

inherent material non-uniformity as well as potential material and geometric 

nonlinearities, and to extend a prior solution from the finite elasticity literature for use in 

a sub-class of AFM studies of cell mechanics. In particular, we submit that a constrained 

mixture model of the cytoskeleton offers potential advantages over many prior models 

for one can account for constituent-specific changes in mechanical properties that have 

been reported recently in AFM studies (e.g., Wu et al., 1998a; Rotsch and Radmacher, 

2000). 
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Background  

Constrained mixture models  

Adherent cells consist of three primary components: the cell membrane, 

cytoplasm, and nucleus. Whereas a complete description of cell mechanics will require 

separate descriptions of the mechanical properties of each component, here we consider 

a homogenized idealization that holds away from the nucleus and in cases of negligible 

bending stiffness of the membrane. The cytoplasm consists of a viscous fluid (called the 

cytosol), distributed organelles, and the cytoskeleton. The cytoskeleton endows the cell 

with most of its structural integrity and consists of three primary constituents: actin 

filaments, intermediate filaments, and microtubules. These filaments are on the order of 

5-25 nm in diameter and often distributed throughout the cytoplasm. Although one could 

employ a full mixture theory (cf. Rajagopal and Tao, 1995) to describe the mechanics of 

such a multi-constituent material, which would require solution of separate balance 

relations for the constituents, there is a lack of information on the interactions between 

the three primary constituents as well as between these constituents and the many 

accessory proteins (Alberts et al., 2002). Thus, it is not possible at present to postulate 

the constitutive relations for momentum exchanges between constituents that are needed 

in a full mixture theory. Following Humphrey (2002a), therefore, we adopt a 

homogenized rule-of-mixtures model for the stress response. This allows us to include 

the separate contributions of the primary cytoskeletal filaments and viscous cytosol 

without having to solve separate balance relations for each constituent, to quantify the 

momentum exchanges, or to prescribe partial traction boundary conditions. A general 
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rule of mixtures relation for the total Cauchy stress t (subject to an overall linear 

momentum balance) can be written as t = t∑φ k k  where  are individual mass 

fractions and t  the individual stress responses, whether elastic or viscous. Indeed, 

including both the “elastic” response of the filaments and the “viscous” response of the 

cytosol may allow one to model some of the complex viscoelastic responses exhibited by 

cells (e.g., see Heidemann et al., 1999). 

φ k

k

For motivational purposes, let us also consider a simple case wherein any 

mechano-sensitive changes in the polymerization or depolymerization of the structural 

filaments occur in but a single altered (i.e., new) configuration. In this case, one must 

track constituents that existed prior to the perturbation in loading (original) plus those 

produced thereafter (new). Within the context of a rule-of-mixtures approach, the 

associated stress response can be written as (Humphrey, 2002a) 
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where p is a Lagrange multiplier that enforces incompressibility over transient loading, 

D is the stretching tensor (i.e., 12 T T− −= +D FF F F� �  where the over-dot denotes a time-

derivative), ~µ  is a viscosity, the F ’s are deformation gradient tensors for each 

constituent relative to individual natural configurations 

κ

κ o  (original) or  (new), and 

the 

nκ

φ ’s are mass fractions (i.e., constituent mass per total mass) of individual 

constituents, which by definition are subject to the constraint 
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Specifically, the subscript o denotes “original” and n denotes “new” whereas the 

superscripts c, a, i, and m denote cytosol, actin, intermediate filaments, and 

microtubules, respectively. In other words, we assume that the stress response depends 

both on the response of extant constituents that formed prior to any perturbation in 

loading as well as on constituents that formed thereafter. (Note: although some 

constituents turnover continuously, there is no net change in mass fraction or mechanical 

behavior when they do so equally in an unchanging configuration, which we refer to as 

maintenance). In the absence of turnover in an altered configuration, the mass fractions 

of the new constituents are zero, thus yielding the standard rule-of-mixtures relation for 

stress. 

Finally, note that the assumption of a constrained mixture requires that 

constituents deform together; because these constituents may have different natural (i.e., 

stress-free) configurations, the individual deformation gradients F ’s need not be the 

same. Similarly, the individual stress responses t

κ

k are expected to differ (k = a, i, m for 

actin, intermediate filaments, and microtubules, respectively). Indeed, this is one of the 

primary advantages of a mixture theory. Nevertheless, we emphasize that in such a 

formulation, the tk represent “constituent-dominated” phenomenological responses that 

implicitly include constituent-to-constituent interactions that cannot be quantified in 

sufficient detail (cf. Brodland and Gordon, 1990). See Humphrey (2002a) for more 

details on the basic theory. 
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Lessons from finite elasticity  

It has been well known for nearly a century that biological soft tissues and 

elastomeric materials share many characteristic behaviors (see Treloar, 1975; Humphrey, 

2002b). This similarity results, in large part, from both classes of materials exhibiting 

primarily an entropic, not energetic, elasticity due to their underlying long chain 

polymeric microstructures. Consequently, many results from finite (rubber) elasticity can 

be very useful in biomechanics. One solution that is particularly relevant to some AFM 

studies is that of a small, quasi-static indentation superimposed on a finite equibiaxial 

stretch of an initially isotropic, nonlinearly elastic, materially uniform, incompressible 

material whose behavior is described by a strain-energy function W W . Briefly, 

the associated constitutive relation for the Cauchy stress is 

I I= ( , )1 2

t I B B= − +
∂
∂

−
∂
∂

−p W
I

W
I

2 2
1 2

1           (2.3) 

where is the left Cauchy-Green tensor and I t  and 

are the principal invariants of the right Cauchy-Green tensor 

. For an initial, finite equibiaxial stretch, we let 

B FF= T

2r t= −( )C

F

r1 = C

2 2I t r

C F= T

2C

F  where µ is 

the in-plane stretch and λ the out-of-plane stretch; by incompressibility,  thus 

allowing the deformation to be parameterized by one stretch. For completeness, let us 

summarize past results for the small, superimposed indentation. 

= diag µ µ,

µ

λ,

λ = 1 / 2

 The superimposed indentation force-depth (P-δ) relationship was found by Green 

et al. (1952) and Beatty and Usmani (1975). It can be written as 
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P W
W

f= 2π Γ
Σ

( )
( )

� (δ )             (2.4) 

where Γ and are functionals that depend on the strain-energy function W and 

the finite equibiaxial stretch µ whereas the function depends on the geometry of the 

tip of the rigid indenter. For example, Costa and Yin (1999) list the following results for 

different tip geometries. For a flat-ended circular indenter of radius a, 

( )W Σ( )W

� ( )f δ

� ( )f aδ δ
π

=
2 ;             (2.5) 

for a spherical tip of radius a, 

� ( )f δ
π

δ=
4

3
3a ;            (2.6) 

for a conical tip with tip angle 2Φ,  

� ( ) tanf δ
π

δ=
2

2
2Φ ;             (2.7) 

and for a blunted cone-shaped tip of angle 2Φ, which transitions at radius b to a 

spherical cap of radius a, 

� ( )
tan

arcsin
tan

f r r b
r

r
a

r b b r b
ac

c

c

c
c

cδ
π

δ π
= − −

F
HG
I
KJ

F
HG

I
KJ −

L
N
MM + − +

−F
HG

I
KJ
O
QP

2
2 2 3 2 3

2 3
2 2 1 2 2 2

Φ Φ
c h ,       (2.8) 

where the radius of contact, r , and is obtained from Eq. (2.9), namely (Briscoe et al., 

1994) 

bc ≥

( )1 22 2 arcsin 0
tan 2

c c
c c

c

r r br b r
a r

πδ
   + − − − −     Φ   

= .                                      (2.9) 
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Finally, Humphrey et al. (1991) list the following results for computing 

and : Γ( )W Σ( )W

Γ =
+

+
−

+
+

( ) ( )A K B K
K

A K B K
K

1 1

1

2

21 1
2 ,   and   Σ =

+
−

+
K

K
K

K
1

1

2

21 1
,            (2.10) 

where 

A W W B W W= + = +2 22
1

2
2

2
1

2
2λ µ µ µ( ), ( )                  (2.11) 

and K1 and K2 (dimensionless) are determined by solving the following quadratic 

equation for K: 

BK A B C D K A2 0+ + − − + =( )          (2.12) 

with, 

C W W W W W= + + − + + + +4 22
1

2
2

2 2
11 22

2 2 2
12

2 2µ µ µ λ µ µ λ µ λ( ) ( ) ( ) (c h)   (2.13) 

and 

D W W W W W= + + − + +4 22
1

2
2

2 2
11 22

4
12

2λ µ λ µ µ µ( ) ( )c h3 .     (2.14) 

Note that, for convenience, we denote  

W W
I

W W
I I

i ji
i

ij
i j

≡
∂
∂

≡
∂

∂ ∂
=, , ,

2

1, 2 .       (2.15) 

Together, Eqs. (2.4)-(2.15) allow one to compute the indentation force-depth relation for 

an incompressible, initially isotropic material that is first stretched equibiaxially (note: 

this stretch induces an anisotropy relative to the original reference configuration). In the 

next section, we extend this result for a special case of a new relationship for cell 
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mechanics that accounts for the separate contributions of the three primary cytoskeletal 

constituents. 

 

 New theoretical framework 

A constitutive relation for cells  

Many different models have been proposed for the constitutive behavior of cells 

(e.g., see Humphrey, 2002a; Stamenovic and Ingber, 2002). These include tensegrity 

models, percolation models, soft glassy rheological models, mixture models, and 

classical models based on linearized elasticity or viscoelasticity. Notwithstanding the 

potential advantages of the different models, we submit that constrained rule-of-mixture 

models (cf. Eq. 2.1) allow one to include nonlinear elasticity and viscoelasticity, 

different properties and distributions of individual constituents, and most importantly the 

different rates and extents of turnover of individual constituents. Here, therefore, 

consider the following relation for the Cauchy stress, 

t I F
C

F D= − +
∂
∂

+p W T c c2 2φ µ φ~( ) ,               (2.16) 

where the viscosity may depend on the volume fraction of the cytosol. That is, as 

insoluble constituents are depolymerized, their fragments may alter the viscosity (cf. 

Herant et al., 2003). More important here, however, we borrow from the work of Lanir 

(1983) to construct a strain-energy function for a potentially evolving cytoskeleton, 

while emphasizing that the resulting relations are microstructurally-motivated, but 

phenomenological, namely 
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W R wk k

k

N
k k=

−
=

d dzz∑ φ ϕ θ α ϕ ϕ
π

ππ
( , ) ( ) cos

2

2

0

2

1

θ

)

,                  (2.17) 

where is a 1-D strain energy function for a filament and is its stretch; the 

superscript k can denote a particular constituent as well as its natural configuration (e.g., 

original versus new). The function R represents the original distribution of 

orientations of a filament family k and are mass fractions. Consequently, 

wk k(α α k

k ( , )ϕ θ

φ k

∂
∂

=
∂
∂

∂
∂

∂
∂−

=
zz∑W

C
R w

C
C

C
d d

MN

k k

k

N k

k

k

MN

φ ϕ θ
α

α ϕ ϕ θ
π

ππ
( , ) cos'

'

2

2

0

2

1 11

11 ,      (2.18) 

where the 1’ (i.e., primed) coordinate axis coincides with the direction of a generic 

filament (Fig. 2.2), and C  is obtained from a tensorial transformation of C . This 

relation will prove useful below. Hence, we have 

′11 MN

t p R w C
C

d d F F Dij ij
k k

k

k k
MNk

N

iM jN
c c

ij= − +
∂
∂

∂
∂

F
HG

I
KJ +

−
=
zz∑δ φ ϕ θ

α α
ϕ ϕ θ φ µ φ

π

ππ
2 1

2
2

2

2

0

2 11

1

( , ) cos ~( )
'

 (2.19) 

Clearly then, in the absence of constituent turnover, our constitutive relation can be 

written as a simple rule-of-mixtures with each primary constituent having a single 

reference configuration (i.e., N = 1,2,3 for original actin a, intermediate filaments i, and 

microtubules m), namely 

t I t t t= − + + + +p a a i i m m c cφ φ φ φ µ φ2 D~( ) .       (2.20) 

Turnover of constituents can easily be incorporated in Eq. (2.19), in principle, given 

appropriate kinetics for the mass fractions, information on the potential evolution of the 

individual natural configurations, and information on the potential evolution of the 

distribution of the filaments. This is left for subsequent consideration. 
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Fig. 2.2. Local spherical coordinate system used for microstructurally-motivated, 
phenomenological constitutive relations of a living cell. The arrow represents the 
orientation of an individual filament belonging to any of the three primary families of 
cytoskeletal filaments. The function R  quantifies the distribution of all such 
orientations. 

k ( , )ϕ θ

 

Small indentation superimposed on a finite equibiaxial stretch 

Conceptually, it may be prudent to think of at least four configurations for the 

cell in an AFM test (Fig. 2.3). First, we have a non-adherent cell with perhaps a fairly 

random distribution of cytoskeletal filaments. Deposition of the cell onto a substrate 

involves two phases: initial contact, with an upregulation of integrins, followed by an 

active spreading. Relative to the non-adherent reference configuration, we might think of 

this spreading as somewhat of an in-plane stretch. Finally, if the substrate is deformable, 

the cell could be stretched further prior to testing with the AFM. This potential sequence 

of events motivates the consideration of a small indentation superimposed on a large “in-

plane” deformation of a mixture that originally had a nearly uniform distribution of  con- 
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Fig. 2.3. Four configurations for an adherent cell, including an assumed materially 

isotropic cell in a non-adherent, traction-free reference configuration. Adherence and 

active spreading likely change the material symmetry from isotropic to anisotropic via 

an affine deformation-dependent mechanism and possibly active remodeling (not 

considered explicitly). 

 

stituents. Whereas the aforementioned solution for the relation P-δ (Eq. 2.4) was derived 

for a 3-D stored energy function W I , the proposed strain-energy for the cell (Eq. 

2.17) is written in terms of individual 1-D stored energy functions w

I( , )1 2

k that depend solely 

on the stretch αk experienced by the individual constituent. Fortunately, these stretches 

relate to the macroscopic deformation C if we assume affine deformations. Hence, we 

merely need transformation relations between derivatives with respect to the invariants Ii 



 22

and those in terms of the components of C in order to utilize prior results for the 

indentation solution.  Note, therefore, that 

∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

W
C

W
I

I
C

W
I

I
CMN MN MN1

1

2

2         (2.21) 

whereby for an in-plane equibiaxial stretch, we need only consider derivatives with 

respect to C11, C22, and C33. These provide three equations in terms of the two 

“unknown” derivatives of W with respect to I1 and I2, which are denoted by W1 and W2, 

respectively. For an equibiaxial stretch, however, the results for the in-plane components 

C11 and C22 are the same and it is easy to show that 

W
C C

C C W
C

C C W
C

W
C

W
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1
11 33

11 22
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22 33
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2 2
2
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− +
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HG
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KJ

=
−

∂
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− +
∂
∂

F
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I
KJ

( ) ( )
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µ λ

µ µ λ
,     (2.22) 

2 2 2
33 11 11 33 11 33

1 1W W W WW
C C C C C Cλ µ

   ∂ ∂ ∂ ∂
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− 

33 33

.     (2.23) 

Next, let W g and C C C1 11 22= �( , , ) W g C C C2 11 22= ~( , , )  and consider the following 

derivatives:  

∂
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+
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∂
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2 ,   (2.24) 

which provide six equations in terms of the four “unknown” second derivatives of W 

with respect to the invariants, which we denote by Wij jiW=  (cf. Eq. 2.15). As before, 

however, the equations for the components C  and  provide the same information, 11 C22
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thus leaving four equations. Solving these four equations for the four second derivatives 

of W with respect to the principal invariants of C yields, 
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where W , and W12 21=
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Recall that C  for our case herein, with , which allows these 

equations to be specialized. Most importantly, however, we can now compute A, B, C 

and D in Eqs. (2.11)-(2.14), and thus compute 

= diag µ µ λ2 2 2, , λ = 1 2/ µ

Γ Σ( ) /W ( )W  in Eq. (2.10) – this allows 

us to compute indentation force-depth relations P-δ for the model cell (Eqs. 2.16-2.20). 

Although the final equation can be written directly, it proves expedient to calculate 

numerically the requisite quantities from these simple formulae1. 

Finally, because little is yet known about the specific functional forms of 

 for the individual constituents of the cytoskeleton, or the associated values of wk k(α )

                                                 
1 Explicit derivations were carried out for a Mooney-Rivlin material whereby the 
classical result was confirmed (cf. equation 8 in Humphrey et al. 1991). 
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the material parameters, we nondimensionalize the problem to allow illustrative 

simulations. Let length, time, and mass scales be, respectively, 

L d T d
E

M ds s s= = =, ,ρ ρ
2

3 ,           (2.28) 

where d is the diameter of the cell in the non-adherent state (see Fig. 2.3), ρ is the overall 

mass density of the cell, and  

E = F
HG
I
KJ→

lim
µ 1

Γ
Σ

,            (2.29)  

where E is an initial overall elastic modulus of a cell that can be estimated at µ λ= = 1, 

with Γ and Σ obtained from Eq. (2.10). Consequently, Eq. 2.4 can be written as 

 Ψ Θ= 2π η( )x ,            (2.30) 

where 

 Ψ Θ
Γ Σ

= = =
P

d E E
f
d2 , ,
�

η
δb g
2 ,        (2.31) 

 and x d= δ . 

  

Illustrative simulations 

There is a pressing need for data that are sufficient for identifying specific forms 

of the constitutive functions (including and ) and calculating values of 

the associated material parameters for each constituent. Such data often have to await the 

development of a theoretical framework, however, for without a framework one often 

does not know what to measure (e.g., overall modulus in a Hertz model versus stiffness 

wk k(α ) R k ( , )ϕ θ
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and orientation for individual filaments). Notwithstanding the current lack of sufficient 

data, let us illustrate qualitatively some predictions of the present theoretical framework. 

Such simulations help us to develop intuition and indeed may help us to interpret future 

experimental results. 

 

Illustrative mechanical behaviors 

Despite scant information on the mechanical behavior of individual filaments (or, 

more precisely, filament-dominated behaviors that include the effects of select accessory 

proteins), it appears that these behaviors may be qualitatively similar to those of soft 

tissue – nonlinear with slight hysteresis (Janmey, 1991; Liu and Pollack, 2002). Hence, 

one possible form for the 1-D energy function is (Humphrey and Yin, 1987)  

w c ck k k k k( ) exp ( )α α= −1
2 1

21c −1h ,        (2.32) 

where  and  are separate material parameters for each family of constituents k. 

Another possible form is (Lanir, 1983) 

kc 1
kc

w ck k k kα αc h c h= −1
2 2

2
1

k
1

,         (2.33) 

which yields a linear first Piola-Kirchhoff stress vs. stretch relation (note: Eq. 2.32 

reduces to Eq. 2.33 in the limit as , with c c , no sum on k).  α k → 1 ck k
2 ≅

 Similarly, despite increasing data from confocal and multi-photon microscopy, 

there is little information on specific distributions of the orientations of the cytoskeletal 

filaments. For purposes of illustration, however, consider a three-dimensional von Mises 
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A B 

Fig. 2.4. Illustrative (possible) distributions of cytoskeletal filaments given by a von 
Mises-Fisher distribution function (cf. Eq. 2.34). (A) κ = 3, β = 0, γ = π/4, (B) κ = 7, β = 
0, γ = π/4. 
 

-Fisher distribution that results directly by generalizing the von Mises distributions on 

the two-dimensional circle (Fisher et al., 1987), namely 

Rk ( , )
sinh

exp cos cos cos( ) sin sin ;

, .

ϕ θ κ
π κ

κ ϕ β θ γ ϕ β

π ϕ π θ π

= −

− ≤ ≤ ≤ ≤
4

2 2 0 2

b g
b g

+
    (2.34) 

This distribution has three parameters: κ, β, and γ. κ is a shape, or concentration factor. 

The larger the value of κ the more the distribution is concentrated towards the direction 

(β, γ) – see Fig. 2.4. β and γ are location parameters where the distribution has rotational 

symmetry about the direction (β, γ). Since Rk is a probability density function, its 

integral over all possible orientations must satisfy the normalization condition, 

( )
2 2

0 2
, cos 1k .R d d k

π π

π
ϕ θ ϕ ϕ θ

−
= ∀∫ ∫          (2.35) 
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Illustrative numerical results  

Recalling Fig. 2.3, let us assume that each family of filaments is randomly 

distributed in the non-adherent reference configuration. That is, let us assume an initial 

isotropy despite any stretch-induced anisotropy associated with cell spreading or 

subsequent stretching of the substrate. (note: such stretch-induced changes in orientation 

can be calculated simply given where  and m  are unit vectors in 

the direction of a particular filament in original and deformed configurations, 

respectively). Consequently, let R . Let volume fraction of the actin 

filaments be  (Cheng et al., 2000). Material parameters for each filament 

within the cytoskeleton are chosen such that the actin filaments are stiffer in extension 

than the microtubules, with the intermediate filaments exhibiting an intermediate 

extensional stiffness (Janmey et al., 1991). Given such values, we can estimate the 

volume fractions of the microtubules and intermediate filaments. Assuming that their 

volume fractions are the same, and using empirical results from Rotsch and Radmacher 

(2000), which show that the “elastic modulus” of the cell decreases by a factor of 3 when 

actin filaments are disrupted, we compare the initial elastic moduli E of two cases, 

control and actin-disrupted (Eq. 2.29). Of course, if the filament is disrupted completely, 

its volume fraction  is zero. The parameters for our calculations are given in Table 

2.1. Finally, for purposes of non-dimensionalization, note that the volume of an average 

culture cell is approximately 4 picoliters (Alberts et al., 2002), thus let d = 20 

α
κ

k k k
km F M=

k ( , ) /ϕ θ = 1 4

k M k k

π

φ a = 0 038.

φ k
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Table 2.1  
Material parameters for a model cell 
Nondimensional Parameter Actin 

Filaments Microtubules Intermediate 
Filaments 

Volume Fraction φ 0.038 0.017 0.017 
Stiffness Parameter c/E 1.78 1.78 1.78 
Material Parameter c1 120 50 80 
Stiffness Parameter c2/E 214 89 142 
Note: the volume fraction for actin was taken from Cheng et al., (2000). The volume 
fractions of the microtubules and intermediate filaments were estimated from Eqs. 2.10-
2.15, 2.29, and from the experiments of Rotsch and Radmacher (2000). Stiffness 
parameters and material parameters were assumed based on Janmey (1991); that for c2/E 
was selected for direct comparisons between the exponential and linear models.  
  

µm. Furthermore, let ρ = 1 g/ml for water is the most abundant substance in cells 

(Alberts et al. 2002). 

Assuming a quasi-static indentation (i.e., D = 0 in Eq. 2.16), consider P-δ 

(actually Ψ − η ) results for different values of the in-plane stretch µ ∈ [1, 1.12] for both 

an exponential and a linear behavior (Eqs. 2.32 and 2.33) of the filaments and with a 

flat-ended cylindrical indenter (Fig. 2.5). Similarly, consider results at a single stretch (µ 

= 1.2) for exponential-type filament behaviors with four different indenter tips (Fig. 

2.6A). If we interpret the slope of the force-depth relation as a measure of the “stiffness” 

of the cell, we see that both the degree of finite stretch (e.g., degree of spreading) and the 

geometry of the tip dramatically affect this result given the same material properties. In 

particular, only the flat-ended tip yields a linear force-depth relation for the small 

indentation. The non-flat tipped indenters contact increasingly more material as they 

indent deeper. Finally, note that removal of individual constituents reduces the stiffness 

as expected (Fig. 2.6B): disruption of the actin filaments can red- 
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A 

 

B 

 

Fig. 2.5. Combined out-of-plane indentation and in-plane equibiaxial stretch for (A) 
exponential-type filaments and (B) linear-type filaments, each indented by a flat-ended 
circular cylinder with radius 30 nm. Each line corresponds to different in-plane stretches, 
from lower to upper, of µ = 1.00 to 1.12 in steps of 0.02. All results are non-dimensional 
to emphasize the qualitative responses, not the specific values. 
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B A 

 

Fig. 2.6. Combined indentation and equibiaxial in-plane stretch, µ = 1.2, for the 
exponential-type filament behavior. (A) Effects of four different indenter tips: flat-ended 
circular cylinder with radius a = 30 nm (dash-dotted line, which is linear), sphere with 
radius a = 30 nm (dashed line), cone with tip angle 2Φ = 75° (dotted line), and blunted 
cone with tip angle 2Φ = 75° and radius a = 30 nm (solid line). The nonlinear responses 
(for all but the flat-ended indenter) are due, in part, to the nonlinearly increasing contact 
area between the indenter and cell. (B) Effects of cytoskeleton disrupting drugs with 
blunted cone, with 2Φ = 75° and a = 30 nm: control (solid line), actin filament 
disrupting drugs (dotted line for disruption of all actin filaments, and dash-dotted line 
disruption of half the actin filaments), and microtubule and intermediate filament 
disrupting drugs (dashed line). We assume that if the filament is disrupted completely, 
the volume fraction φ of the corresponding filament is zero. Note that the predicted 
behavior is dominated by the actin. All results are non-dimensional to emphasize the 
qualitative responses, not the specific values. 
 

-uce the stiffness substantially, whereas there can be little contribution to the overall 

cytoskeletal stiffness by the microtubules or intermediate filaments. This observation 

agrees with the empirical findings of Wakatsuki et al. (2000) and Wu et al. (1998a). 

Although not shown, additional simulations with different values of the material 

parameters (cf. Table 2.1) revealed qualitatively similar results: decreasing the stiffness 

of the actin dramatically decreased the indentation force at a given indentation depth and 
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tip-geometry whereas uniformly raising or lowering the values of the parameters had no 

effect due to the non-dimensionalization. 

 

Discussion 

Many different experimental methods exist for interrogating the biomechanical 

properties and mechanobiological responses of cells. They include: atomic force 

microscopy, magnetic bead cytometry, micro-fabricated cantilevers, micro-patterned 

surfaces, micro-pipet aspiration, optical traps, stretching of cells on flexible membranes, 

laminar flow chambers, and rotating bioreactors. Each method promises new insight into 

the wonderfully complex structure, function, and properties of living cells, and each 

warrants rigorous biomechanical analysis. Herein, we focused on atomic force 

microscopy not only because of its widespread usage, but primarily because of the need 

for improved methods of data analysis.  

 Many investigators recognize that the simplifying assumptions inherent to the 

Hertz solution do not apply in most AFM studies on cells. This was shown convincingly 

via finite element simulations by Costa and Yin (1999) – they wrote, “Widely applied 

infinitesimal strain models agreed with FEM results for linear elastic materials, but 

yielded substantial errors in the estimated properties for nonlinear elastic materials.” 

Consequently, some employ nonlinear empirical P-δ relations and then try to ascribe 

meaning to the associated parameters (e.g., Miyazaki and Hayashi, 1999; Sato et al., 

2000). This approach is limited, however, by the inability to separate structural from 

material stiffnesses; indeed, it has no biomechanical basis. Alternatively, others appear 



 32

to rationalize using the Hertz solution by arguing that measuring absolute values of the 

material properties is less important than delineating relative changes from cell-to-cell or 

intervention-to-intervention. Finally, some appear to use the Hertz solution simply 

because of a lack of a viable alternative. Mathur et al. (2001) imply, for example, that 

there is simply a need for further development of applicable theoretical frameworks. 

Regardless, there is a pressing need to move beyond the assumptions of a linearly elastic 

behavior of a single constituent continuum under infinitesimal strains. 

The approach and findings of Costa and Yin (1999) represent a pivotal step in 

improving analyses of AFM experiments. Nonetheless, their finite element solutions are 

limited largely because of the use of a commercially available code that is best suited for 

strain-energy functions W W  that describe the isotropic behavior of single 

constituent (i.e., materially uniform) continua. Cells, in contrast, contain multiple 

structurally important constituents that are able to remodel individually to different 

extents and at different rates. Indeed, recent advances in molecular biology that allow 

one to selectively modify individual constituents (e.g., see Wu et al., 1998a; Rotsch and 

Radmacher, 2000) necessitate a more general theoretical framework for analysis. Albeit 

based on a number of simplifying assumptions – e.g., small, quasi-static indentations on 

equibiaxially stretched cells – the approach presented herein can account for the separate 

orientations, properties, and deformations of multiple constituents within the 

cytoskeleton, and thus changes in the mechanical response of cells that are induced by 

biological or mechanical stimuli such as applying cytoskeleton disrupting drugs or pre-

stretch. Indeed, despite the need to introduce particular constitutive relations to 

I I= � ( , )1 2
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numerically illustrate the theory, these can be varied easily as demanded by increasingly 

better data, thus rendering the overall theory more general. 

We emphasize that the two primary uses of such a framework should be to guide 

experimentation (e.g., highlight what needs to be measured, such as constituent 

properties, orientations, and mass fractions) and to serve as a check for future finite 

element analyses of AFM, which will be needed to study additional classes of tests. In 

particular, the present results cannot be used in cases wherein the indentation is above 

the nucleus or near the periphery where the effects of the underlying substrate are 

pronounced. In such cases, finite element analyses will be essential. Likewise, the 

present results should only be used in tests wherein the indentation is “small” and 

“quasi-static”. This reminds us again that theory should guide experiment. Finally, the 

most basic issue is that of the continuum assumption. The dimensions of the cell are on 

the order of µm whereas those of the cytoskeletal filaments are on the order of nm, 

which suggest that a continuum assumption may be reasonable as used in most papers to 

date2. Nevertheless, the diameter of the indenter is often on the order of 10-50 nm, 

similar to that of the diameters of the primary constituents, thus this merits careful 

attention. This could be addressed, in part, by comparing predictions with additional 

experiments and would likely be aided by simultaneous imaging of the cytoskeleton. 

Conversely, one may need to consider larger diameter indenters, particularly ones that 

are flat-ended for they alone can yield linear force-depth data. Of course, in the final 

analysis, as noted by Truesdell and Noll (1965), “Whether the continuum approach is 
                                                 
2 Other characteristic length scales for the structure could include pore size, inter-
filament distances, and so on. 
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justified, in any particular case, is a matter, not for the philosophy or methodology of 

science, but for the experimental test.” Each case must be so justified, depending on the 

particular test and its overall goal. Going beyond a continuum approach will, of course, 

require remarkably fine detail on the distributions and interactions of all constituents, a 

significant challenge.       

 In conclusion, the complex structure and properties of living cells demands 

continued research into improved models. At the minimum, we should account for the 

nonlinear material behavior over finite strains of a multi-constituent material. The 

present work describes one step toward that goal, one that synthesizes prior work on 

microstructural models of soft tissues and an analytical solution from finite elasticity. It 

is hoped that this new model allows improved interpretation of sub-classes of AFM tests 

and, more importantly, that it provides some direction for further research. 
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CHAPTER III 

TIME-DEPENDENT CHANGES IN CELL STIFFNESS AND FOCAL 

ADHESION AREA IN RESPONSE TO CYCLIC STRETCH 

                           

Introduction 

Mechanical forces are critical in the development and continual remodeling of 

most tissues. Amongst other stimuli, abnormal strain profiles have been implicated in the 

pathogenesis of a number of diseases affecting arteries, particularly atherosclerosis 

(Thubrikar, 1988), and pressure overload causes cardiovascular hypertrophy (Collins et 

al., 1996). At the cellular level, strain transferred via the extracellular matrix has been 

shown to elicit numerous responses such as signal transduction and altered gene 

expression, which in turn alters cell migration, proliferation, adhesion, and cytoskeletal 

reorganization (Sumpio et al., 1987; Reusch et al., 1996; Smith et al., 1997; Kim et al., 

1999; Li and Xu, 2000; Goldschmidt et al., 2001). Of particular interest here, numerous 

reports demonstrate cytoskeletal rearrangement in response to substrate deformation 

(Costa et al., 2002; Hayakawa et al., 2001; Smith et al., 1997; Takemasa et al., 1998; 

Wang et al., 2000, 2001; Yoshigi et al., 2003). For example, Smith et al. (1997) 

compared unstretched and cyclically stretched cells by transmission electron microscopy 

and fluorescence microscopy and suggested that cyclic stretching increases the number 

and organization of actin filaments (F-actin) and focal adhesions (FA) compared to the 

unstretched situation. Cunningham et al. (2002) used standard western blotting 

techniques to quantify focal contact associated proteins in smooth muscle cells subjected 
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to cyclic strain and suggested that insoluble levels of focal contact components are 

altered rapidly following the application of an appropriate number of mechanical 

perturbations. These two ideas, that mechanical strain induces F-actin polymerization 

and increases FA assembly, imply that the increased formation and reorganization of 

cytoskeletal filaments in the cells subjected to perturbations may be a consequence of 

FA changes. 

It is generally accepted that the cytoskeleton is the major determinant of cell 

stiffness (Wu et al., 1998a; Smith et al., 2003; Huang et al., 2005). Relationships 

between cytoskeletal remodeling and the mechanical properties of cells have been 

studied extensively given the recent development of techniques capable of probing and 

manipulating forces and displacements less than a piconewton and a nanometer, 

respectively (for a review, see Vliet et al., 2003; Huang et al., 2004). Nonetheless, little 

is known about the quantitative relationship between the mechanical properties of cells 

and cytoskeletal remodeling.  

In this study, we developed a simple cell extension device that can be combined 

with atomic force microscopy (AFM) and confocal microscopy to examine the time 

course of changes in cell stiffness and cytoskeletal remodeling, respectively. Rapid 

changes, within a few minutes, in cell stiffness were observed following cyclic strain for 

up to 60 minutes. The time course of changes in cytoskeletal remodeling, obtained from 

immunofluorescence micrographs, was consistent with the changes in cell stiffness. 
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Materials and methods 

Design of cell extension device 

Design criteria for the cell stretching device were: (a) homogeneous, equi-biaxial 

strain field throughout the membrane, (b) stationary plane of focus allowing cell 

observation during cyclic stretching, (c) chamber design for growing and stimulating 

living cells in an aqueous environment, and (d) real time stiffness measurement 

following stretching on an atomic force microscope stage. 

The device applies a cyclic, uniform equibiaxial stretch to a silicone elastic 

membrane by dynamic infusion and withdrawal of air using a programmable syringe 

pump (Model 44, Harvard Apparatus, South Natick, MA) (Fig. 3.1). The device consists 

of a channeled polycarbonate cylinder that serves as the wall of the cell culture chamber, 

a transparent silicone elastic membrane (0.127 mm in thickness, Specialty 

Manufacturing Inc., Saginaw, MI), and a polycarbonate holder ring that clamps the 

membrane. The membrane serves as the growth surface for cells and remains in the same 

plane during stretching. The channeled ring has smooth rounded edges at the point of 

contact with the membrane substrate to reduce friction during stretching. The device 

permits in situ visualization of cell geometry and deformation via an elastic membrane 

that is transparent and accessible to the objective of an inverted microscope. The overall 

dimensions of the device are 5.3 cm in diameter and 1.6 cm in height, which allows it to 

be secured on the stage of an AFM using a magnetic ring that holds the device in place.  
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Calibration of cell extension device 

The device was designed to impart an equibiaxial strain distribution in the 

circular membrane, that is, r θµ µ= , where µi is a stretch ratio, and subscripts r, θ denote 

radial and circumferential directions, respectively. In this axisymmetric case, the values 

of the stretch ratios relative to the x, y directions are same as ,r θµ µ  (see Appendix), 

hence the state of strain is equibiaxial independent of coordinate system. 

To confirm that the design actually produced a nearly homogeneous (away from 

the edge effects) and equibiaxial stretch, and to calibrate the degree of stretch in terms of 

the amount of air infused/withdrawn, we analyzed the response of the membrane in the 

absence of cells. Briefly, 7 sets of four markers (50-90 µm in diameter, dyed 

microspheres) were placed on the membrane at several locations and glued with RP30 

(Adhesive Systems, Frankfort, IL) (Fig. 3.2A). Three or four adjacent markers in a 

quadrilateral configuration allow standard interpolation methods for computing the in-

plane strains (Humphrey et al., 1987). Images of the tracking markers were captured via 

a charge-coupled-device (CCD) camera and a video frame-grabber board, which 

digitizes the image in a 512 x 512 pixel array. For each capture, a search algorithm based 

on pixel intensity values was used to locate the approximate (±1 pixel) coordinates for 

the centroid of each marker. Stretch ratios were then computed by comparing the current 

marker positions for each set, given by pixel coordinates, relative to the reference 

positions. Bilinear isoparametric interpolation allowed calculations of the Green strains, 

and thus stretch ratios, regionally for each set of markers. 
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Fig. 3.2B shows results for the calibration of stretched membranes. Mean equibiaxial 

stretch µ is plotted versus the volume V of air infused/withdrawn and was fit with a 

polynomial relation: . Hence, 5% and 

10% stretch required withdrawal of 3.36 ml and 4.84 ml, respectively. Fig. 3.3A shows 

the near homogeneity of the stretch field, particularly in the central 40% of the 

membrane, where the standard deviations were small. Fig. 3.3B shows further that the 

stretch field is indeed nearly equibiaxial, with the dashed line showing the ideal line of 

identity. Hence, as long as one interrogates cells within the central region, the desired 

homogeneous, equibiaxial stretches will be attained. 

20.0029 0.0101 0.9832 ( 0.9993)V V Rµ = + + =2

 

Membrane/device preparation 

The membrane and all parts of device were sterilized in 70% ethanol for 30 min, 

washed 3 times with sterile Dulbecco’s phosphate buffered saline (DPBS), and exposed 

to ultraviolet light for 30 min in a laminar flow hood (Costa et al., 2002). The membrane 

was then mounted in the device using sterile techniques, and coated with a gelatin for 4 

hr at 37°C in a humidified 5% carbon dioxide atmosphere and then washed 3 times with 

sterile DPBS.  

 

Cell isolation and culture 

Vascular Smooth Muscle Cells (VSMCs) were isolated from first order feeder 

arterioles of rat cremaster muscle using previously described methods (Wu et al., 

1998b). Cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM/F-12) su- 
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Fig. 3.3. (A) Stretch ratios at various positions along the radius of the membrane. The 
stretch field is nearly homogeneous, particularly in the central 40% of the membrane, the 
mean value of which is shown by horizontal dashed line. (B) Stretch ratios in two 
orthogonal directions (X and Y) in the center during air withdrawal from 1 to 5 ml. 
Symbols are close to the dashed line of identity, suggesting that stretch field is nearly 
equibiaxial. Values are mean±SD. N=16 observations at each point. 
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pplemented with 10% fetal bovine serum (FBS), and placed in an incubator at 37°C and 

in humidified 5% carbon dioxide. VSMCs of passages 3-10 were seeded onto the 

gelatin-coated membrane substrate mounted within the device and were allowed to 

adhere and spread for 2 to 3 days to reach ~50% confluence. 

 

Stiffness measurements with AFM 

Silicon-nitride cantilevers with three types of non-functionalized tips (a 

pyramidal shape with opening angle of 70°, a 2 µm diameter spherical bead, and a 5 µm 

diameter bead) were used to examine the effect of tip geometry, and thus the contact 

area between the tip and the cell. The cantilevers with a pyramidal shape tip (Microlever, 

Thermomicroscopes, Sunnyvale, CA) had spring constants ranging from 11 to 16 

pN/nm. The cantilevers were calibrated using the thermal noise method by Asylum 

Research Inc. (Santa Barbara, CA), which is subject to an estimated 20% error. 

Following calibration, we used a mean value of the spring constant of 14.7 pN/nm to 

estimate cell stiffness. The spring constant of cantilevers with a 2 µm or a 5 µm bead 

fused to the tip was supplied by the manufacturer (Novascan, Ames, Iowa) as 10 pN/nm. 

A Bioscope System AFM (Model 3A, Digital Instruments, Santa Barbara, CA) mounted 

on an Axiovert 100 TV inverted microscope (Carl Zeiss, Thornwood, NY) was used to 

identify cells and then measure the transverse stiffness. AFM probes were allowed to 

repeatedly indent and retract from the surface of individual VSMCs in a Force Mode 

Operation at 0.5 Hz. Tip velocity was 0.8 µm/s, which is slow enough to minimize 

viscous contributions (Mathur et al. 2001). Each cell was indented approximately 
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halfway between the nucleus and its periphery for 30 s to obtain 15 indentation curves 

per cell per state of equibiaxial stretch. Five to twelve cells were selected per condition, 

which is defined by each combination of 0.25 Hz cyclic stretch of µ=1.05 or 1.1, and 

durations of cyclic stretching of 0, 1, 2, 5, 15, 30, 60 min in each experiment; indentation 

was performed at a fixed stretch of 1.05 or 1.1 immediately following the cyclic 

stretching stimulus. Hence, a total of 15 to 25 cells were studied during 2 to 5 

independent experiments for each mechanically stimulated condition.  

During AFM indentation, the AFM tip exerts a force on the cell that is the 

product of the spring constant and the deflection of the cantilever. To obtain the 

cantilever deflection, the initial point of contact between the tip and the cell surface was 

determined by comparing the slopes of associated force-indentation curves.  Indentation 

depth δ is obtained by subtracting cantilever deflection from piezo movement. Once the 

force and the tip geometry are known, the stiffness of the cell can be estimated by (Costa 

and Yin., 1999) 

( )
ˆ

2π δ
=

PE
f

,                        (3.1) 

where P is the indentation force obtained from the AFM, and f(δ) is a function that 

depends on the tip geometry and the indentation depth. Beatty and Usmani (1975) list 

the following results for different tip geometries. For a spherical tip of radius a: 

( ) 34
3

f aδ δ
π

= ,                        (3.2) 

whereas for a conical tip with tip angle 2Φ: 
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( ) 2
2

2 tanf δ δ
π

Φ
= .                       (3.3) 

 

Immunofluorescence staining and quantitative analysis of focal adhesions 

Dual-labeling immunofluorescence was performed to simultaneously observe the 

time course of changes in the distribution of F-actin and FA containing vinculin or 

paxillin. After cyclic stretching, cells were immediately fixed with a 2% 

paraformaldehyde and quenched with a glycine buffer (0.1 mM glycine). After washing, 

the cells were incubated overnight at 4°C with either a mouse anti-vinculin or a mouse 

anti-paxillin monoclonal antibody (Chemicon, Temecula, CA) in labeling buffer (150 

mM NaCl, 15 mJ Na3C6H5O7, 0.05% Triton X-100, 2% BSA). Cells were then washed 6 

times with a cold washing buffer (150 mM NaCl, 15 mJ Na3C6H5O7, 0.05% Triton X-

100), and an Alexa 594-conjugated anti-mouse IgG secondary antibody (Molecular 

Probes, Eugene, OR) and an Alexa 488-conjugated phalloidin (Molecular Probes) were 

added for 1 h at room temperature in a dark environment. The fluorescently-labeled cells 

were washed again with the cold washing buffer, then visualized on a Leica laser 

confocal microscope system using either a 63x oil or a 63x water immersion objective. 

Quantitative analysis of FA proteins was performed on 6 to 7 cells each for two 

independent experiments per mechanical stretching condition. ImageJ software (NIH, 

Bethesda, MD) was used to quantify FA areas in terms of an area ratio. This ratio was 

calculated as the projected total FA area divided by cell area based on 

immunofluorescence staining of F-actin, vinculin, and paxillin.  
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Statistical analysis 

For analysis of cell stiffness obtained by AFM and area ratios obtained from 

immunofluorescence images, computed values were expressed as mean±SEM unless 

otherwise noted. Statistical significance compared before and after stretching was 

calculated by one-way analysis of variance (ANOVA) followed by Dunnett’s test (SPSS, 

Chicago, IL), with P<0.05 considered as significant. 

 

Results 

Repeated stiffness measurements (i.e., E , in kPa) before and after a single step 

increase in stretch revealed that cell stiffness did not change significantly during AFM 

indentation measurement for the ~30 min period needed to perform repeated AFM 

indentations on multiple cells. Shown are results from a single cell tested with a 

pyramidal shape tip (Fig. 3.4). Panel A shows results over 30 min of repeated 

indentations in an unstretched (reference) configuration whereas panel B shows results 

over 30 minutes of testing following a single 15% step increase in equibiaxial stretch. 

Note that the measurements following stretch also followed an initial ~30 min 

equilibration period. Hence, in response to a 15% stretch, cell stiffness presumably did 

not change until ~50 min after the step increase in stretch. Therefore, from these 

observations, all stiffness measurements were taken in less than 30 min following 

stretching in this study. 

ˆ

    Force-indentation curves using the aforementioned three different tips revealed 

an effect of tip geometry on estimated cell stiffness (Fig. 3.5). In each case, stiffness  
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Fig. 3.4. Time course of changes in cell stiffness during AFM indentation measurement. 
Pyramidal shaped AFM probes repeatedly indented a location halfway between the 
nucleus and the periphery in a force mode operation at 0.5 Hz (indent for 1 s and retract 
for 1 s). (A) Stiffness over 30 min of repeated indentations in an unstretched cell. Mean 
stiffness during indentation, shown as a dashed line, is 13.2 kPa. (B) Stiffness of 
repeated indentations in response to a single step 15% increase in stretch. The 
measurements were taken from 30 min to 60 min. Hence, cell stiffness did not change 
significantly until ~50 min following stretch. Mean stiffness during indentation, shown 
as dashed line, is 17.8 kPa. 
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Fig. 3.5. Effect of tip geometry on cell stiffness. : pyramidal shaped tip; : 2 µm 
diameter bead tip; : 5 µm diameter bead tip. Inset is a detail of the low stiffness region 
of the curves. Note that tip geometry can affect the magnitude of cell stiffness, with a 
sharp tip yielding both a higher value and variability in cell stiffness.  
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approached a constant value beyond a certain indentation depth, suggesting no 

contribution from the substrate for indentation depths in this study (150 nm or less 

relative to the cell thickness of ~2 µm). Note, however, that the mean stiffness value 

obtained from pyramidal shaped tip was ~15 kPa (Fig. 3.5, inset), which was ~10 times 

that for 2 or 5 µm diameter bead-attached tips. That is, as it is well known, the 

magnitude of stiffness obtained from AFM can depend on tip geometry. Since the 

cytoskeleton that plays a critical role in cell stiffness is a highly dynamic structure, 

indentation with a sharp tip whose characteristic length is similar to the length scale of 

the cytoskeletal network can yield a high variability in stiffness depending on which 

region of the cell surface the AFM tip indents, such as on the cytoskeletal filaments or 

on the fluid-like cytosol. Indentation measurements using tips fused with beads whose 

dimension is 500~1000 times larger than the diameter of the cytoskeletal filaments 

produced stable and less noisy results that are more consistent with the underlying 

continuum assumptions used to estimate the stiffness. Hence, all subsequent results are 

for indentations with the 5 µm diameter beads. 

Fig. 3.6 shows stiffness values for 19 to 24 cells subjected to 10% cyclic stretch 

for up to 60 min and then held at 10% stretch for ~30 min during AFM testing. Note, 

too, that each bar in the figures shows the mean±SD from fifteen stiffness calculations 

for each cell. Moreover, a different pattern within each bar represents an independent 

experiment. In the unstretched state, the stiffness values were fairly stable, yielding an 

average value of 1.30 kPa (N=23 cells from 4 independent experiments), with no trends 

with time (cf. Fig. 3.4). However, there was a larger variability in stiffen- 
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Fig. 3.6. Each bar shows stiffness (mean±SD) of individual cells subjected to 10% cyclic 
stretching. Stretching time and stiffness values (mean±SEM) that were combined and 
averaged per condition are listed in each figure. Different pattern within each bar 
represents an independent experiment. 
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-ess 1 min following cyclic stretching. Note that the stiffness values of some cells 

subjected to cyclic stretching for 1 min were even lower than those of unstretched cells. 

Stiffness increased significantly and became less variable after 2 min of cyclic 

stretching, with the mean equal to 2.42 kPa (N=24). Finally, after 5 to 60 min of cyclic 

stretching, the stiffness decreased back towards a constant value (1.45 kPa), which was 

12% higher than baseline. 

Fig. 3.7 summarizes the effect of cyclic stretching time (1 to 60 min) and 

magnitude (5 or 10%) on cell stiffness. Results from 2 to 5 independent experiments per 

condition were combined and averaged. A 5% cyclic stretching, as a whole, yielded no 

significant change in stiffness despite a slight increase after 1 and 2 min of stretching 

with a return towards baseline thereafter. In contrast, a 10% cyclic stretching induced a 

significant increase in stiffness that was highest after 2 min and returned thereafter 

towards baseline after 5 min of stretching as seen in Fig. 3.6.     

Recent studies showed that increased mechanical loading could recruit FA 

associated proteins, such as vinculin and paxillin (Sawada and Sheetz, 2002), and 

increase the thickness of FA (Yoshigi et al., 2005). That is, an increase in FA sites at the 

basal surface of the cell could reinforce F-actin thus resulting in an increase in stiffness.  

Based on results in Fig. 3.7, additional cultured cells were subjected to 0.25 Hz, 10% 

cyclic stretching for 2 min (maximum change in stiffness) or 30 min (stabilized 

restoration towards baseline), then fixed and stained to examine possible cyclic 

stretching-dependent cytoskeletal remodeling. A significant increase in vinculin-

containing FA area was observed 2 min following cyclic stretch (Fig. 3.8B), which  
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Fig. 3.7. Effect of cyclic stretching time and magnitude on cell stiffness. Mean stiffness 
values of individual cells per condition are combined and averaged. White and shaded 
bars represent 5% and 10% stretching, respectively. Results are mean±SEM. * shows 
P<0.05 and ** shows P<0.0001 compared to the unstretched state. N=19 to 24 cells over 
2 to 5 independent experiments were performed for each condition. 
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Fig. 3.8. Immunofluorescence micrographs of rat vascular smooth muscle cells. (A) 
Cells on unstretched membrane. (B) Cells subjected to equibiaxial cyclic stretch (10%, 
0.25 Hz) for 2 min. (C) Cells subjected to equibiaxial cyclic stretch (10%, 0.25 Hz) for 
30 min. Compared to panels A and C, cyclic stretch for 2 min in panel B induced 
significant increases in FA associated vinculin staining, particularly at the periphery of 
the cells. Bars, 50 µm. 
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Fig. 3.9. Effect of equibiaxial stretch on focal contact localization. (A) Cells on 
unstretched membrane. (B) Cells subjected to equibiaxial cyclic stretch (10%, 0.25 Hz) 
for 2 min. (C) Cells subjected to equibiaxial cyclic stretch (10%, 0.25 Hz) for 30 min. 
Note that cyclic stretch for 2 min in panel B induced significant increases in FA 
associated paxillin staining, particularly at the periphery of the cells. Projected cell area 
and the paxillin-containing FA area were also quantified in the middle and right column, 
respectively. Bars, 50 µm. 
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was consistent with changes in stiffness inferred with the AFM. Vinculin area returned 

towards the unstretched level albeit slightly higher following 30 min of cyclic stretching 

(Fig. 3.8C). Changes in the area of FA associated paxillin in response to cyclic stretching 

were consistent with those of vinculin (Fig. 3.9), with a stretch-dependent accumulation 

of paxillin observed at FA sites. 

Finally, to study relationships between cell stiffness and cytoskeletal remodeling 

in response to cyclic stretching, projected cell area and FA area based on 

immunofluorescence dual labeling of vinculin/paxillin were compared (Fig. 3.10). FA 

area was divided by the corresponding cell area to generate an area ratio, which 

represents the fraction of FA at the basal surface of a cell. Area ratio corresponding to 

vinculin was found to increase by 49% after 2 min of cyclic stretching, but to return 

towards baseline after 30 min of stretching. FA associated paxillin increased in a similar 

manner, but with a much larger magnitude (92%) than noted for vinculin (Fig. 3.10). In 

summary, there was a close relationship between stretch induced increase in cell 

stiffness and area ratio corresponding to FA associated vinculin and paxillin (Fig. 3.11). 

 

Discussion 

Observations from diverse studies on cell biomechanics and mechanobiology 

reveal that altered mechanical stretching can induce changes in CSK structure and 

overall mechanical properties. The objective of this study was to investigate 

relationships between cell stiffness and FA remodeling in response to cyclic stretching.  



 56

 

Fig. 3.10. Ratio of FA associated vinculin (open) and paxillin (shaded) area to 
corresponding projected cell area in response to stretching time. Cells were subjected to 
0.25 Hz, 10% cyclic stretching for 2 or 30 min. Results are mean±SEM. * shows 
P<0.005 and ** shows P<0.0001 compared to the corresponding unstretched state. 
Experiments for vinculin and paxillin were performed independently. N=6 to 7 cells 
each for two independent experiments per condition.  
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Fig. 3.11. Correlation between cell stiffness and FA associated vinculin/paxillin area 
ratio in response to 10% cyclic stretch. : vinculin; : paxillin. Results are mean±SEM.  
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Toward this end, AFM combined with a cell extension device allowed real-time 

measurement of cell stiffness following cyclic stretching. To employ a continuum-based 

approach for quantifying cell stiffness (Costa and Yin, 1999), we used AFM tips fused 

with 2µm or 5µm diameter beads whose dimension is 500~1000 times larger than the 

diameter of the CSK filaments. This selection is supported by the findings of Mathur et 

al. (2001), who compared the effect of tip geometry on cell stiffness. They found that 

blunt cone-spherical tips produced more stable and lower stiffness values compared to 

sharp conical tips, which is consistent with our study. That is, indentation with a sharp 

tip whose characteristic length is similar to the diameters of the CSK filaments can yield 

a high variability in stiffness depending on which region of the cell surface the AFM tip 

indents, which is not consistent with the underlying continuum assumptions used to 

estimate cell stiffness. For example, Mizutani et al. (2004) used pyramidal tips and 

reported large variabilities in stiffness, from 0.7 to 40 kPa. In contrast, 5µm diameter 

beads used herein produced a fairly stable range of stiffness values (see Fig. 3.6) except 

for 1 min cyclic stretching, which is discussed below. Although the magnitude of cell 

stiffness measured in this study using 5µm diameter tips (1~3 kPa) was lower than that 

of previous studies using sharp pyramidal or conical tips, it was very similar to the range 

(0.1~10 kPa) obtained from most other techniques for mechanically probing cells, 

including optical traps, magnetic traps, or magnetic twisting (Huang et al., 2004).  

Previous studies have shown that altered mechanical stimuli can alter cell 

stiffness under very different conditions. Smith et al. (2003) found changes in cell 

stiffness after 10~12 days of continuous cyclic stretching, a very different time frame 
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from that of our study. Deng et al. (2004) reported the time course of changes in cell 

stiffness in response to twisting integrin-bound microbeads, which is a much more 

localized stimulus than that due to substrate stretch. Mizutani et al. (2004) found 

increases (decreases) in stiffness following a single step increase (decrease) in substrate 

stretch, which were followed by gradual (over 50 min) returns towards baseline values. 

They used AFM with a force-mapping mode that provides height and stiffness images of 

a sample by scanning a cell on certain area, which requires ~30 min to get mean stiffness 

value at one spot. Hence, this approach is not appropriate to capture rapid and detailed 

changes of cell stiffness within even a minute.  

Our study showed that cyclic stretching induced rapid increases in cell stiffness 

(within 1 min, but marked at 2 min) that were soon resolved (within 5 min) in that 

stiffness returned back towards normal and remained as such over long periods (up to 50 

min). Such rapid responses are consistent with studies by Costa et al. (2002) and 

Cunningham et al. (2002). That the measured stiffness was particularly variable after 1 

min of cyclic stretching (Fig. 3.6) may reflect a transient period with slight differences 

between the timing within individual cells. Pender and McCulloch (1991) showed, using 

fluorimetry, that F-actin decreased up to 3-fold within only 10 s of 1% stretch and back 

towards baseline after 75 s. It is easy to imagine, therefore, that 1 min of 10% cyclic 

stretching could be within a transition period during which rapid turnover of F-actin 

occurs: cells undergo F-actin disruption with reassembly ~1 min following cyclic 

stretching. We note, too, that both mechanical stimuli and contractile stimulation can 

change cell stiffness that is brought about by CSK remodeling (Deng et al., 2004; Saez et 
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al., 2004). Interestingly, the degree of stiffness increase as well as corresponding time 

frame in our study is quantitatively consistent with the time course of the response of 

smooth muscle cells to KCl, a contractile agonist (Smith et al., 2003), although little is 

known about the relation between mechanical and chemical stimuli.  

Consistent with the biochemical data from Cunningham et al. (2002), cyclic 

stretching induced rapid changes in FA localization (Figs. 8 and 9). Cells subjected to 

10% cyclic stretching for 2 min exhibited a significant increase in FA area compared to 

unstretched cells. Because fluorescence intensity of FA was very strong at the basal 

surface, whereas that of F-actin is highly dependent on the focal plane within variable 

thickness of cells, we chose to quantify FA area. Quantitatively consistent with 

Cunningham et al. (2002), FA associated vinculin area ratio increased by ~50% and FA 

associated paxillin area ratio by ~90% at 2 min and then returned towards baseline by 30 

min.  

In summary, this study demonstrates that cyclically stretching isolated VSMCs 

significantly and rapidly alters both cell stiffness and FA associated vinculin and 

paxillin. That cell stiffness correlated well with FA remodeling suggested that FA 

remodeling could play a critical role in cell stiffness by recruiting and anchoring F-actin. 

It is not clear, however, whether this rapid change in cell stiffness following cyclic 

stretching is due to F-actin polymerization or the development of additional tensile force 

in F-actin generated by the phosphorylation of paxillin. Additional studies on the 

biochemical consequences of cyclic stretching will provide further insight into how cells 

sense and respond to their mechanical environment. 
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CHAPTER IV 

TIME-DEPENDENT CHANGES IN CYTOSKELETAL REMODELING  

IN RESPONSE TO CYCLIC STRETCH: A THEORETICAL STUDY  

BASED ON EXPERIMENTAL DATA 

 

Introduction 

The cytoskeleton (CSK) not only provides a structural framework that 

determines cell shape and mechanical properties, it also influences many important 

cellular functions (Bray, 2000; Alberts et al., 2002). Within a tissue environment, a 

variety of extracellular stimuli, including fluid-induced shear or matrix-induced stretch, 

affect the distribution and organization of the CSK filaments (e.g., Smith et al., 1997; 

Galbraith et al., 1998; Takemasa et al., 1998; Wang et al., 2000, 2001; Hayakawa et al., 

2001; Costa et al., 2002; Yoshigi et al., 2003). Accordingly, many different types of 

mathematical models have been derived to predict mechanosensitive responses of living 

cells (for a review, see Zhu et al., 2000; Stamenovic and Ingber, 2002; Bao and Suresh 

2003; Huang et al., 2004; Lim et al., 2006). All of these models of cell mechanics have 

been based on either standard continuum models (based on the assumptions of material 

uniformity) or microstructural models based on assumed orientations, distributions, and 

material behaviors of individual CSK filaments (e.g., tensegrity). Recently, Humphrey 

(2002a) proposed a fundamentally different approach based on the concept of a 

constrained mixture, which is a microstructurally motivated continuum model that 

allows individual constituents to turnover dynamically. This approach allows one to 
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include the separate contributions and distributions of the primary CSK filaments and 

viscous cytosol without having to solve separate balance relations for each constituent, 

to quantify possible momentum exchanges between constituents, or to prescribe partial 

traction boundary conditions which are notoriously difficult to identify. Thus, this 

approach can provide details on locally averaged distributions of stresses and strains in 

cells, which in turn can be useful in determining the distribution and transmission of 

forces to subcellular components.  

Recent studies show that a single step (static) increase of substrate stretch can 

induce an immediate increase in cell stiffness (Mizutani et al., 2004) as well as alter the 

area of focal adhesion (FA) associated vinculin (Sawada and Sheetz, 2002). In our recent 

experiments (Na et al., 2006), we found that rapid changes in cell stiffness in response to 

cyclic stretching relate closely to FA recruitment. In this study, therefore, we seek to use 

a constrained mixture approach to model CSK remodeling by synthesizing data on 

stretch-induced dynamic changes in cell stiffness and focal adhesion area. Toward this 

end, the model was fitted to force-indentation curves obtained from atomic force 

microscopy (AFM) measurements of cyclically stretched vascular smooth muscle cells. 

 

Materials and methods 

Details on the cell culture methods, design of the cell stretching device, and data 

collection from AFM and confocal microscopy experiments are in Na et al. (2006); here 

we simply provide a brief review as background. Fig. 4.1 is a flow chart showing an 

overall synthesis of experiments and modeling. 
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Fig. 4.1. Flow chart showing a synthesis of experiments and modeling. In this study, 
results from prior experiments on vascular smooth muscle cells were used to predict 
cytoskeletal (CSK) remodeling in response to cyclic stretching. Values of focal adhesion 
(FA) associated vinculin area obtained from immunostaining and confocal microscopy 
were used as parameters in a mixture model of CSK remodeling. The model was then 
fitted with force-indentation data obtained from AFM measurements to predict time-
dependent CSK remodeling in response to cyclic stretching, 
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Experimental protocol 

Briefly, Vascular Smooth Muscle Cells (VSMCs) from first order feed arterioles 

within rat cremaster muscle were isolated, expanded through 3 to 10 passages, and 

cultured in Dulbecco’s modified Eagle’s medium (DMEM/F-12), supplemented with 

10% fetal bovine serum, on a custom stretching device that can be secured on the stage 

of an AFM. The device applies a cyclic, homogeneous, equibiaxial stretch to the central 

region of a circular silicone elastic membrane by dynamic infusion and withdrawal of air 

using a programmable syringe pump. VSMCs were cyclically stretched 10% at a 

frequency of 0.25 Hz with durations of stretching of 2 or 30 min.  

A Bioscope System atomic force microscope (AFM; Digital Instruments, Santa 

Barbara, CA) mounted on an Axiovert 100 TV inverted microscope (Carl Zeiss, 

Thornwood, NY) was used to obtain force-indentation curves for individual cells. AFM 

probes consisting of silicon-nitride cantilevers fused with a 5µm spherical bead were 

allowed to repeatedly indent and retract from the surface of VSMCs in a Force Mode 

Operation at 0.5 Hz. Tip velocity was 0.8 µm/s, which is slow enough to minimize 

viscous contributions from the cytosol (Mathur et al. 2001). Each cell was indented 

halfway between the nucleus and its periphery for 30 s to obtain 15 indentation curves 

per cell per duration of equibiaxial cyclic stretching. Five to twelve cells were selected 

per plate, and two to five independent experiments were performed per mechanical 

stretching condition for a total of 15-25 cells for each condition. 

Immunofluorescence staining was performed independently. After cyclic 

stretching, cells were immediately fixed with a 2% paraformaldehyde and quenched with 
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a glycine buffer (0.1 mM glycine). After washing, the cells were incubated with a mouse 

anti-vinculin monoclonal antibody, an Alexa 594-conjugated anti-mouse IgG secondary 

antibody, and an Alexa 488-conjugated phalloidin. The fluorescently-labeled cells were 

visualized on a Leica laser confocal microscope system using either a 63x oil or a 63x 

water immersion objective. 

Quantitative analysis of focal adhesion proteins was performed on 6~7 cells each 

for two independent experiments per mechanical stretching condition (10% cyclic 

stretching for 2 or 30 min, respectively). FA area ratio was calculated using ImageJ 

software as the projected total FA area divided by cell area based on 

immunofluorescence staining of actin filaments (F-actin) and vinculin. 

 

CSK remodeling model 

We employed a constrained rule-of-mixtures model for the CSK, which for the 

case of a single change in stretch (unstretched to 10% stretch) can be written generally as 

(recall Eq. 2.1.) 
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where p is a Lagrange multiplier that enforces incompressibility over transient loading, 

D is the stretching tensor (i.e., 12 T T− −= +D FF F F� �  where the over-dot denotes a time-

derivative), ~µ  is a viscosity associated with the cytosol, the F ’s are deformation 

gradient tensors for each constituent relative to individual natural configurations 

κ

κ o  



 66

(original) or  (new), and the nκ φ ’s are mass fractions (i.e., constituent mass per total 

mass) of individual constituents, which by definition are subject to the constraint 
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Whereas the subscript o denotes “original” and n denotes “new,” the superscripts c, a, i, 

and m denote cytosol, actin, intermediate filaments, and microtubules, respectively. This 

basic framework allows one to include nonlinear elasticity and viscoelasticity, different 

properties and distributions of individual constituents, and, most importantly, different 

rates and extents of turnover of individual constituents.  

Although each family of CSK filaments plays a role in maintaining cell shape 

(Ingber, 1993), F-actin has been shown to impart the primary mechanical stiffness of 

living cells (Wu et al., 1998a; Rotsch and Radmacher, 2000; Wakatsuki et al., 2000) and 

to be physically connected to FA sites at the basal membrane (Mitra et al., 2005). Indeed, 

our previous modeling results also showed that removal of intermediate filaments and 

microtubules reduced cell stiffness less than 10% (Na et al., 2004). Herein, therefore, we 

focus exclusively on F-actin. Although cells exhibit viscoelastic character under various 

types of loading, our AFM experiments used a slow tip velocity compared to the 

viscoelastic time constants. Therefore, we restrict our attention to the elastic response of 

F-actin to estimate AFM measured CSK remodeling. In the absence of contributions 

from intermediate filaments, microtubules, and cytosol, therefore, Eq. 4.1 simplifies to 
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κ κ
φ≅ − + +t I F t F ,                 (4.3) 
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where o denotes “originally present” and n denotes “newly formed or assembled.” We 

emphasize that there was not sufficient time to synthesize new F-actin. 

Here, therefore, recall the general form for the Cauchy stress that is required by 

the Clausius-Duhem inequality for an isochoric elastic process: 

2 TWp ∂
= − +

∂
t I F F

C
,                       (4.4) 

where W is a strain energy function and C is the right Cauchy-Green tensor (i.e., 

 where superscript T denotes transpose). Here, we construct a strain energy 

function for potentially evolving F-actin. We emphasize that the resulting relations are 

microstructurally-motivated (Lanir, 1983), but phenomenological. Hence, let 
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where ( )a
k kw α is a 1-D strain energy function for F-actin and kα is its stretch relative to 

an individual, evolving natural configuration. The subscript k denotes the constituent 

family (original or new), which is to say denotes the related natural configuration of the 

F-actin (e.g., k=1 and 2 denotes original and new, respectively). The function R ( , )a
k ϕ θ  

represents the original distribution of orientations of F-actin and a
kφ is the associated 

mass fraction. The superscript a representing F-actin is omitted below without 

ambiguity. Clearly, Eqs. 4.4 and 4.5 yield the same “model” as Eq. 4.3 provided one 

accounts for relationships between the overall and individual reference configurations 

(Baek et al., 2006). For simplicity and because of difficulties of measuring 3-D 

distributions of filaments, let R ( , )k ϕ θ =1/4π, assuming that all filaments are originally 
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distributed isotropically (which is likely prior to adhesion and spreading), although they 

will reorient with deformation. Substituting Eq. (4.5) into Eq. (4.4) gives 
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where the 1’ (i.e., primed) coordinate axis coincides with the direction of a generic 

filament, and C  is obtained from a tensorial transformation of C .  ′11 MN

Consistent with previous reports that the mechanical behavior of individual CSK 

filaments is qualitatively similar to those of soft tissue (Janmey et al., 1991; Liu and 

Pollack 2002; Deguchi et al., 2006), two specific functional forms of the first Piola-

Kirchhoff stress-stretch relation ( w α∂ ∂ ) for the individual CSK filaments were 

compared (Humphrey and Yin, 1987b; Misof et al., 1997): 
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where c and c1 are separate material parameters for F-actin. Note, here, that we assume 

that intrinsic material properties of “original” and “new” F-actin are same; only the 

orientations, mass fractions, and natural configurations evolve. Hence, material 

parameters, c and c1, are assumed to be constant during CSK remodeling.   
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Application of CSK remodeling model to AFM indentation 

Detailed analysis of an AFM indentation superimposed on a finite equibiaxial 

stretch was described previously (Na et al., 2004). Briefly, the force versus indentation 

depth (P-δ) relationship is (Beatty and Usmani, 1975; Green et al., 1952): 

  P W
W

f= 2π δΓ
Σ

( )
( )

� ( ) ,                         (4.9) 

where Γ and are functionals that depend on the strain-energy function W and 

the in-plane finite equibiaxial stretch µ whereas the function depends on the 

geometry of the tip of the rigid indenter. A spherical tip of radius a is used in this study, 

therefore (Beatty and Usmani, 1975), 
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To compute Γ  and , we need the strain energy function W in terms of 

invariants I

( )W Σ(W)

i of the right Cauchy-Green tensor C. Since the proposed strain energy 

function for CSK remodeling is written in terms of stretch α, which is related to C, we 

can easily find the requisite relations between derivatives with respect to the invariants Ii 

and those in terms of the components of C (Na et al., 2004). These results are used 

without restatement here. 

 

Results 

Fig. 4.2 shows representative immunofluorescence micrographs as well as 

corresponding projected total cell areas and FA associated vinculin areas in response to  
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Vinculin/F-actin       Cell area           Vinculin area 
 6096 µm2 600 µm2
A
    

5426 µm2 872 µm2
B
    

 5060 µm2 622 µm2
C
    

Fig. 4.2. Effects of equibiaxial stretch on FA localization. (A) Cells on unstretched 
membrane. (B) Cells subjected to equibiaxial cyclic stretch (10%, 0.25 Hz) for 2 min. 
(C) Cells subjected to equibiaxial cyclic stretch (10%, 0.25 Hz) for 30 min. Note that 
cyclic stretch for 2 min in panel B induces a significant increase in FA associated 
vinculin staining, particularly at the periphery of the cells. Projected cell area and the 
vinculin-containing FA area were also quantified in the middle and right column, 
respectively. Bars, 50 µm. 
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10% cyclic stretching. From prior experiments, the ratio of vinculin to total cell area in 

the unstretched state was 0.105±0.002 (mean±SEM). Following cyclic stretching at 10% 

for 2 min, this area ratio increased to 0.156±0.003. After 30 min of stretching, however, 

this ratio returned toward the unstretched level (0.121±0.004), albeit remaining slightly 

higher. 

Since actin filaments make bundles, via a variety of accessory proteins, to bear 

intracellular stresses (Byers and Fujiwara 1982; Zimerman et al., 2004), we used force-

strain data from single F-actin bundles (Deguchi et al., 2006) isolated from vascular 

smooth muscle cells to determine the material parameters, c and c1 (Eqs. 4.7 and 4.8) for 

F-actin. The first Piola-Kirchhoff stress-stretch relation from their data was described 

well by 2656 138 794w α α α= + −∂ ∂  (103 Pa) assuming the radius of the F-actin 

bundles is 100 nm. The associated best-fit parameters were c=465.3 kPa and c1=3.160 

for the exponential model and c=1464.0 kPa and c1=0.7975 for the Misof model.  

Total mass fraction of F-actin in the unstretched state was obtained by fitting 

force-indentation curves from AFM measurements using Eq. 4.9 along with Eqs. 4.7 and 

4.8 and the corresponding material parameters noted above. Thirteen force-indentation 

curves for unstretched cells whose stiffness values were close to the mean for the 

unstretched cells (1.30 kPa, which was reported in Na et al. (2006)) were chosen for 

fitting (Fig. 4.3). In this case, 0nφ =  and total mass fraction, 
con

(oφ φ≡ ) , was found to 

be ~0.01 for both models. This value is observed to be ~10% of the measured FA related 

area ratio (Table 4.1). Assuming the vinculin containing area ratio in Table 4.1 and the  
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Fig. 4.3. Data from thirteen force-indentation tests obtained from AFM indentations of 
unstretched cells were fitted with a CSK remodeling model (solid line) to estimate mass 
fraction of F-actin in unstretched state. Experimental data were chosen from 3 cells over 
2 independent experiments.   
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Table 4.1  
FA associated vinculin area ratios and total mass fractions of F-actin in response to 10% 
cyclic stretching   

Total F-actin Mass Fraction, φ Stretching Time 
(min) 

FA related 
Area Ratioa Exponential Model Misof Model 

0 0.105±0.002 0.00979b 0.01102b 
2 0.156±0.003 0.01455 0.01637 
30 0.121±0.004 0.01128 0.01270 

a: FA associated vinculin area ratios were obtained from prior results. N=6~7 cells each 
for two independent experiments per condition. Results are mean±SEM. 
b: Total mass fractions in the unstretched state were obtained from fitting 1 force-
indentation curve per cell with a CSK remodeling model. N=5 cells. 

 

mass fraction of F-actin are directly proportional, total mass fractions of F-actin of cells 

subjected to cyclic stretch were then computed for both models (Table 4.1).  

Next, to estimate CSK remodeling during cyclic stretching, data from five force-

indentation tests on 5 different cells (one curve for each cell) whose stiffness values 

were close to the mean values of cell stiffness for each mechanical stretching condition 

were fit in a similar way to find both ando nφ φ . Mean values of cell stiffness after 2 and 

30 min cyclic stretching were 2.42 and 1.46 kPa, respectively (Na et al., 2006). Note, too, 

that the total mass fraction of F-actin at each mechanical stretching condition is the sum 

of mass fractions of “original” and “new” F-actin. Hence, following constraints were 

enforced for the 2 min cyclic stretching condition: 
2min 2min 2min

φ φ φ+ =o n , 
2min con

φ φ≤o , 

2min
1.0α ≥n , as well as 

2minoα<1.0 , where α is the stretch of an F-actin bundle. 

Constraints for 30 min stretching conditions are similar to those for 2 min. Computed 

changes in mass fractions and stretch ratios of F-actin following mechanical stretching 

condition are shown in Fig. 4.3. Whereas the initial mass fractions of F-actin were 

1.1≤
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0.01
con

φ ∼

0.01n

 in the unstretched state for both models, after 2 min of 10% stretch µ the 

mass fraction of original F-actin decreased by 60% and 47% for the exponential and 

Misof model, respectively. Conversely, computed values of the new F-actin were 

φ ∼  for both models, suggesting that F-actin did remodel in response to cyclic 

stretching. After 30 min of cyclic stretching, most of the original F-actin was disrupted, 

as revealed by a computed mass fraction of 0.0016oφ ∼

0.01n

 for both models, and the mass 

fraction of the newly polymerized F-actin was φ ∼  for both models (Fig. 4.4A). 

Stretch ratios computed for the new F-actin following 2 min of cyclic stretching were 

nα ~1.03 and 1.02 (in contrast to 1.1oα = ) for the exponential and Misof model, 

respectively, which decreased to 1.01nα ∼  for both models following 30 min of cyclic 

stretching (Fig. 4.4B).  

0.01

In conclusion, the CSK remodeling model based on both the exponential and the 

Misof relation for F-actin elasticity plus the immunofluorescence and AFM data suggest 

that cells “produced” new F-actin (~1% of the total cell mass) soon after the onset of 

cyclic stretching: at 2 min nφ ∼

n

, which were maintained for longer periods of cyclic 

stretching (Fig. 4.4A), and F-actin had associated different natural configurations 

whereby the stretch was α ~1.03 after 2 min of stretching but ~1.01 after 30 min (Fig. 

4.4B).       
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Fig. 4.4. CSK
values. : ori
model;  : ne
B

A

 

 remodeling in response to cyclic stretching. Results show high-low-mean 
ginal F-actin in the exponential model; : original F-actin in the Misof 
w F-actin in the exponential model; : new F-actin in the Misof model. 
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Discussion 

The importance of understanding well both cell mechanics and mechanobiology 

is undisputed, yet significant challenges remain. For a vascular smooth muscle cell 

(VSMC), for example, we ultimately need to know how the macroscopic loads induced 

by blood pressure and blood flow within a vessel are distributed throughout the complex 

cell-matrix structure that defines the vascular wall, how these loads are transferred to 

particular sites (e.g., at integrins) on the surface of each cell, how these localized loads 

are distributed within the cytoskeleton (e.g., along actin filaments), and ultimately how 

these distributed loads affect cell signaling and altered gene expression. Because of the 

extreme structural complexity over many different length scales – from millimeters at 

the level of an artery, to microns at the level of collagen fibers and cells, to nanometers 

at the level of cell surface receptors and CSK constituents – mathematical modeling 

must range from continuum to microstructural to molecular biomechanics (e.g., see, 

Stamenović and Ingber, 2002; Humphrey, 2003; Bao and Suresh, 2003; Lim et al., 

2006).  

 Continuum descriptions are well accepted at the vessel level, but can apply at the 

cellular level as well. For example, characteristic dimensions of a VSMC, on the order of 

25 to 100 µm, are much greater than those of the CSK constituents, which are on the 

order of nm, that endow the cell with its structural integrity and its ability to transduce 

mechanical signals. Indeed, when one considers the large number of receptors and 

integrins on a cell surface (on the order of 103 to 105; Lauffenburger and Linderman, 

1993), there is further motivation to consider appropriately averaged field quantities. 
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Finally, formulating continuum level models for both the vessel and the associated cells 

in parallel with formulations of molecular dynamics models for intracellular constituents 

will facilitate the development of much needed multi-scale models. 

The focus of this chapter is a continuum biomechanical analysis of AFM data on 

the overall stiffness of cyclically stretched VSMCs in the absence of complexities due to 

cell-cell and cell-matrix interactions. Whereas most prior AFM data have been collected 

using nm scale cantilever tips, we suggest that this is inconsistent with the continuum 

approximations typically used to interpret the associated stiffness data (e.g., the Hertz 

model). For this reason, we confined our analysis to data collected using larger (5 µm 

diameter) tips despite having data from both fine and coarse tips (Na et al., 2006). Our 

results cannot be compared directly to most prior results, therefore, which tend to yield 

larger estimates of stiffness due to the small tips (e.g., see Fig. 3.5). Moreover, in 

contrast to most prior continuum models of cells that assume an unchanging materially 

uniform body, we employed a new constrained mixture model that mass averages 

contributions of primary CSK constituents, which are allowed to remodel over time. 

Again, therefore, present results cannot be compared directly to prior results. 

Many families of CSK proteins contribute to overall cell stiffness, but F-actin 

tends to dominate in many situations (Wu et al., 1998a; Smith et al., 2003; Na et al., 

2004; Huang et al., 2005;) and thus was the focus herein. There is increasing information 

available on the elasticity of F-actin, including isolated filaments and networks having 

different degrees of cross-links (e.g., Liu and Pollack, 2002; Gardel et al., 2004). Best-fit 

values of material parameters embodied in two different forms of the stored energy 
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function ( )a a
iw α , i = “o” or “n”, were determined directly from data in Deguchi et al. 

(2006) and provided suitable descriptions of the characteristically nonlinear force-length 

response of bundles of F-actin. Other parameters that contribute to cell stiffness include 

the mass density, orientation, and cross-linking of the F-actin (Gardel et al., 2004). The 

present mixture model can capture mass density directly via the evolving mass fraction 

a
iφ  and orientation directly via the potentially evolving distribution function ( , )a

iR ϕ θ ; at 

present, the degree of cross-linking is correlated with the material parameter c, 

consistent with the results of Gardel et al. (2004). A full evaluation of this general 

modeling framework, including refinements therein, will clearly require significantly 

more data on CSK properties and remodeling than is currently available, but this is one 

use of a theory – to identify and guide needed experiments. Herein, therefore, we simply 

illustrate potential utility using available data. Actin density was assumed to correlate 

with FA density, which is to say vinculin or paxillin (Saez et al., 2004), for which data 

were available. We restricted attention to equibiaxial stretching, which preserves fiber 

orientations (in plane) and thereby negated the need for detailed analyses of changes in 

fiber orientations. The original distribution of the actin within the cell was simply 

assumed to be isotropic relative to some reference configuration (e.g., before the cell 

adhered and spread). Cross-link density was not monitored, thus we assumed that the 

material parameters remained constant despite changes in density. Despite these 

assumptions, Figs. 4.3 and 4.5 reveal that the model was able to fit the overall stiffness 

data from the AFM reasonably well and thereby supports the general utility of a 

constrained mixture model for the cell.  
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.5. Representative force-indentation curves fitted with AFM indentation 
ements obtained from independent experiments: (A) unstretch; (B) 2 min of 10% 
tretch; (C) 30 min of 10% cyclic stretch. 



 80

It is well known that CSK constituents turnover rapidly in response to 

perturbations in loading (e.g., Mooney et al., 1995; Galbraith et al., 1998). Although the 

turnover of F-actin clearly involves depolymerization / repolymerization, the particular 

changes associated with this turnover remain unknown. Mizutani et al. (2004) recently 

suggested that just as fibroblasts appear to try to maintain a “tensional homeostasis” in 

collagen gels in which they are cultured (Brown et al., 1998), so too fibroblasts appear to 

try to maintain a tensional homeostasis within their CSK. That is, in response to 

increased (decreased) mechanical loading, cells appear to modify both the extracellular 

matrix and their cytoskeleton so as to decrease (increase) the stress and thereby restore 

“normalcy”. Indeed, this concept of a homeostatic tendency is consistent with vessel 

level responses to increased or decreased stresses (Taber, 1995; Rachev, 2000; Gleason 

and Humphrey, 2005). The key question, however, is: How does the cell control 

mechanical homeostasis in different situations? Mizutani et al. found that in response to 

increased (decreased) uniaxial stretch, fibroblasts exhibited an immediate increase 

(decrease) in stiffness followed by a gradual (over tens of minutes) return toward the 

baseline stiffness. As noted above, cell stiffness can be altered by altering actin density, 

orientation, or cross-linking. In addition, however, we suggest that the ability to 

depolymerize / repolymerize actin allows the cell to control stiffness by changing the 

length of the filaments, which is to say by changing their degree of stretch (e.g., since 

stiffness is stretch dependent). In the context of tissue-level growth and remodeling, this 

is equivalent to saying that the natural configuration can change for each constituent, 

which has proved to yield predictions that are consistent with many empirical 
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observations (Gleason and Humphrey, 2005). Indeed, Fig. 4.4 herein suggests that the 

acute increase in stiffness in response to an increased cyclic stretch was probably due to 

an increased stretch of the original filaments whereas the subsequent decrease back 

towards normalcy was consistent with a replacement of the highly stretched original 

filaments with less stretched new (i.e., reassembled) filaments. That the stiffness did not 

return completely to baseline, as in the report by Mizutani et al. (2004), may suggest that 

the “homeostatic target” is actually an acceptable range (note: Brown et al. (1998) 

similarly suggest that cells respond only if the perturbation is outside a range of ±25% of 

normalcy). Albeit measured in endothelial cells, Costa et al. (2002) reported a clever 

experiment wherein cells were cultured on pre-stretched membranes that could 

subsequently be relaxed. They found that the actin stress fibers did not buckle, as would 

be expected of a thin compressed filament, until the membrane shortened significantly. 

They suggested that a distribution of “pre-extensions” (up to 26%) or pre-stresses exist 

in the F-actin bundles, which is consistent with the tensional homeostasis concept 

(Humphrey, 2002a). Clearly, there is a need to quantify this homeostatic stretch in each 

cell type and filament. Because of the highly nonlinear behavior of F-actin (Janmey et 

al., 1991; Liu and Pollack, 2002), it appears that small changes in stretch can 

significantly affect stiffness, restoring it towards its homeostatic range. There is, 

therefore, a pressing need for experiments to focus on not just the rates of assembly and 

disassembly, but also the pre-extension in the reassembled filaments in relation to 

normal values. 
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In conclusion, we emphasize that, regardless of the type of mathematical model, a 

disadvantage of most current experimental techniques used to study cell mechanics, 

including AFM indentation force-depth tests, is that the resulting data are essentially 1-D 

and fitting such data is not a stringent test of a model. There is, therefore, a need to 

evaluate this model (as well as other models) using data from multiple experimental set-

ups but the same cell conditions. Moreover, just as in tissue level mechanics, we must 

move towards multi-axial tests of cell mechanics, which provide significantly more 

information. Finally, because CSK filaments remodel in response to mechanical 

perturbations, they may well respond locally to changes in loading that are induced by 

our measurement tools, hence raising the question whether the data actually reflect 

“native” properties or rapidly “adapted” properties to the local non-physiologic loading. 

Thus, there is also a need for real-time imaging of CSK changes during mechanical 

experiments wherein native cell-matrix and cell-cell connections are maintained and the 

loading on the cell is both multidimensional and more natural. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

The cytoskeleton is a diverse, multi-protein framework that plays a fundamental 

role in many cellular activities including mitosis, cell division, intracellular transport, 

cell motility, muscle contraction, and the regulation of cell polarity and organization 

(Bray, 2000; Alberts et al., 2002). Furthermore, cytoskeletal filaments have been 

implicated in the pathogenesis of a wide variety of diseases including cancer, blood 

disease, cardiovascular disease, inflammatory disease, neurodegenerative disease, and 

problems with skin, nail, cornea, hair, liver and colon (Ben-ze'ev, 1985; Williamson et 

al., 1985; Worthen et al., 1989; Bosch et al., 1994; Fuchs and Cleveland, 1998; Towbin 

1998; Kirfel et al., 2003). Increasing evidence suggests that the distribution and 

organization of the cytoskeleton in living cells are affected by mechanical stresses 

(Smith et al., 1997; Galbraith et al., 1998; Takemasa et al., 1998; Wang et al., 2000, 

2001; Hayakawa et al., 2001; Costa et al., 2002; Yoshigi et al., 2003) and the 

cytoskeleton determines cell stiffness (Wu et al., 1998a; Smith et al., 2003; Huang et al., 

2005).  

To investigate the effect of mechanical stretching on cytoskeletal remodeling and 

cell stiffness, we used vascular smooth muscle cells isolated from first order feed 

arterioles of rat cremaster muscles. Our approach had three components: development of 

a constrained-mixture based constitutive model for cells to correlate mechanical 

adaptation with cytoskeletal remodeling; measurement of the time-dependent changes in 
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focal adhesion localization and cell stiffness in response to cyclic stretching; and 

estimation of cytoskeletal remodeling by synthesizing data on stretch-induced dynamic 

changes in cell stiffness and focal adhesion area. 

The first objective of this study was to develop a constrained-mixture based 

constitutive model for cells that can predict cytoskeletal remodeling in response to 

mechanical stimuli. We developed a fully nonlinear, constrained mixture model for 

adherent cells that allows one to account separately for the contributions of the primary 

structural constituents of the cytoskeleton and extended a prior solution from the finite 

elasticity literature (Green et al., 1952; Beatty and Usmani, 1975) for use in a sub-class 

of atomic force microscopy studies of cell mechanics. The model showed that the degree 

of substrate stretch and the geometry of the AFM tip dramatically affect cell stiffness 

(Costa and Yin, 1999; Na et al., 2004). Consistent with Wakatsuki et al. (2000) and Wu 

et al. (1998a), the model showed that disruption of the actin filaments can reduce the 

stiffness substantially, whereas there can be little contribution to the overall cell stiffness 

by the microtubules or intermediate filaments. Albeit based on a number of simplifying 

assumptions-e.g., small, quasi-static indentations on equibiaxially stretched cells-the 

approach proposed here can account for the separate orientations, properties, and 

deformations of multiple constituents within the cytoskeleton, and, thus, changes in the 

mechanical response of cells that are induced by biological or mechanical stimuli, such 

as applying cytoskeleton disrupting drugs or substrate stretching.  

The second main objective of this study was to investigate time-dependent 

changes in smooth muscle cell stiffness and focal adhesion localization in response to 
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cyclic stretching. We developed a simple cell extension device that can be combined 

with AFM and confocal microscopy to examine the time course of changes in cell 

stiffness and cytoskeletal remodeling, respectively. The device applies a cyclic, uniform 

equibiaxial stretch to a silicone elastic membrane (0.127 mm in thickness) by dynamic 

infusion and withdrawal of air using a programmable syringe pump. The overall 

dimensions of the device are 5.3 cm in diameter and 1.6 cm high, which allows it to be 

secured on the stage of an AFM using a magnetic ring that holds the device in place. 

Calibration results of the device showed that it could produce a near homogeneous and 

equibiaxial stretch, particularly in the central 40% of the membrane. 

To examine the effect of AFM tip geometry, three types of non-functionalized 

tips (a pyramidal shape with opening angle of 70°, a 2 µm diameter spherical bead, and a 

5 µm diameter bead) were used. The mean stiffness value obtained from 2 or 5 µm 

diameter bead-attached tips was very stable compared to that obtained from pyramidal 

shaped tip and ~2 kPa, which was very similar to the range (0.1~10 kPa) obtained from 

most other techniques for mechanically probing cells.    

To investigate time-dependent changes in smooth muscle cell stiffness, a total of 

15 to 25 cells were selected during 2 to 5 independent experiments for each 

mechanically stimulated condition, which is defined by each combination of 0.25 Hz 

cyclic stretch of µ=1.05 or 1.1, and durations of cyclic stretching of 0, 1, 2, 5, 15, 30, 60 

min in each experiment. A 5% cyclic stretching yielded no significant change in stiffness 

despite a slight increase after 1 and 2 min of stretching. In contrast, a 10% cyclic 
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stretching induced a significant increase in stiffness that was highest after 2 min and 

returned thereafter towards baseline after 5 min of stretching.  

Additional experiments using immunofluorescence staining and confocal 

microscopy were performed to test whether cytoskeletal remodeling is correlated with 

the changes in cell stiffness. Consistent with biochemical data from Cunningham et al. 

(2002), cyclic stretching induced rapid changes in focal adhesion localization. Cells 

subjected to 10% cyclic stretching for 2 min exhibited a significant increase in focal 

adhesion area compared to unstretched cells. Therefore, there was a close relationship 

between stretch induced increases in cell stiffness and area ratio corresponding to focal 

adhesion associated vinculin and paxillin. In summary, this study demonstrates that 

cyclic stretching significantly and rapidly alters both cell stiffness and focal adhesion 

associated vinculin and paxillin. That cell stiffness correlated well with focal adhesion 

remodeling suggested that focal adhesion remodeling plays a critical role in cell stiffness 

by recruiting and anchoring F-actin.   

The third objective of this study was to estimate cytoskeletal remodeling by 

synthesizing data on stretch-induced dynamic changes in cell stiffness and focal 

adhesion area using the aforementioned constrained mixture approach. In contrast to 

most prior cell mechanics models that assume an unchanging materially uniform body, 

we employed a new constrained mixture model that mass averages contributions of 

primary cytoskeletal constituents, which are allowed to remodel over time. Force-

indentation data obtained from AFM tests on cells whose stiffness values were close to 

the mean values of cell stiffness for each mechanical stretching condition were fit with a 
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mixture model. Here, actin density was assumed to correlate with focal adhesion density. 

We restricted attention to equibiaxial stretching, which preserves fiber orientations (in 

plane) and thereby negated the need for detailed analyses of changes in fiber 

orientations. Cross-link density was not monitored, thus we assumed that the material 

parameters remained constant despite changes in density. Despite these assumptions, the 

model was able to fit the overall stiffness data from the AFM reasonably well and 

thereby supports the general utility of a constrained mixture model for the cell. Results 

suggest that the acute increase in stiffness in response to an increased cyclic stretch was 

probably due to an increased stretch of the original filaments whereas the subsequent 

decrease back towards normalcy was consistent with a replacement of the highly 

stretched original filaments with less stretched (i.e., reassembled) new filaments.  

In conclusion, regardless of the type of mathematical model, a disadvantage of 

most current experimental techniques used to study cell mechanics, including AFM 

indentation force-depth tests, is that the resulting data are essentially 1-D and fitting such 

data is not a stringent test of a model. There is, therefore, a need to evaluate this model 

(as well as other models) using data from multiple experimental set-ups but the same cell 

conditions. Finally, because CSK filaments remodel in response to mechanical 

perturbations, they may well respond locally to changes in loading that are induced by 

our measurement tools, hence raising the question whether the data actually reflect 

“native” properties or rapidly “adapted” properties to the local non-physiologic loading. 

Thus, there is also a need for real-time imaging of CSK changes during mechanical 
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experiments wherein native cell-matrix and cell-cell connections are maintained and the 

loading on the cell is both multidimensional and more natural. 
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APPENDIX 

 

Assume that, in cylindrical coordinates, when the membrane is stretched 

equibiaxially, it has an isochoric, axisymmetric, and homogeneous deformation of the 

form, namely, r R, , z Zµ θ= = Θ = , where ( , , )R ZΘ and ( , , )r zθ are particle 

coordinates of an unstretched reference and stretched configuration, respectively, with µ 

and λ constants at each stretch. Hence, the physical components of deformation gradient 

F are 

[ ]
0 0 0 0

0 0 0
0 0 0 0

r R
r R

µ
µ 0

λ λ

∂ ∂  
  = =  
    

F





,              (A1) 

with 21λ µ=  from the assumed incompressibility requiring detF=1. Since the 

membrane is very thin, we can reduce F for 3-D to that for 2-D. Now, therefore, 

consider 2-D with 

 [ ]2

0
0D

β
β

 
=  

 
F .                 (A2) 

Cartesian coordinates are obtained by rotating the cylindrical coordinates by an 

angle θ̂  about the axis perpendicular to the membrane. Thus, 

ˆ ˆ ˆcos sin , sin cosx r y r
ˆ

θ θθ θ θ= + = − +e e e e e θe .        (A3) 

The left Cauchy-Green tensor in the Cartesian coordinate system, which is defined by 

2 2
T

D D=B F F , is defined as follows: 

ij ik jl klB A A B=  or T=B ABA ,           (A4) 
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where [ ]
ˆ ˆcos sin
ˆ ˆsin cos

θ θ

θ θ

 
= 

−  
A   and B is the left Cauchy-Green tensor in the cylindrical 

coordinate system. Substituting A into Eq. (A4) gives  

11 1211 12

21 2221 22

ˆ ˆ ˆcos sin cos sin
ˆ ˆ ˆsin cos sin cos

B BB B
B BB B

ˆ

ˆ
θ θ θ θ

θ θ θ

   −   
=      

−          θ
 .       (A5) 

Thus, 

2 2
11 11 22

12 11 22

2 2
22 11 22

ˆ ˆcos sin ,
ˆ ˆ ˆsin cos sin cos ,
ˆ ˆsin cos ,

B B B

B B B

B B B

θ θ
ˆθ θ θ

θ θ

= +

= − +

= +

θ          (A6) 

with 21 12B B= . 

Since 2
11 22B B β= =  in this problem, 

11 11 22 22B B B B= = = with 12 21 0B B= = .         (A7) 

Therefore, components of deformation gradient in cylindrical coordinates are 

same as those in Cartesian coordinates and the deformation is equibiaxial. 
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