23 research outputs found

    The clinical relevance of PCL index on the reconstruction of anterior cruciate ligament with hamstring tendon autograft

    Get PDF
    The posterior cruciate ligament index (PCL index) has been reported as a diagnostic and prognostic marker for anterior cruciate ligament (ACL) reconstruction. The clinical relevance of PCL index on the reconstruction of ACL with hamstring tendon autograft has not been described in the literature. The objective of this study is to evaluate the importance of the PCL index as a marker of anatomic reconstruction and of functional improvement of patients undergoing ACL reconstruction with HT autograft. Twenty-four patients were submitted to ACL reconstruction with HT autograft. The PCL index was assessed by magnetic resonance imaging before and after surgery. The functional evaluation was performed through the International Knee Documentation Committee (IKDC) Subjective Knee Evaluation Form© and Knee Society Knee Scoring System© (IKS). Patients presented a significant positive variation of the PCL index, IKDC and IKS scores. There is no significant correlation between PCL index variation and IKDC and IKS scores (p > 0.05). Unlike other studies reporting a relationship between the PCL index, control of rotational kinematics, and functional improvement in patients undergoing ACL reconstruction with bone-patellar tendon-bone autograft, this study does not demonstrate this association. There is evidence in this study to show that the PCL index may be used as an anatomic reconstructive marker of ACL but not to predict the clinical outcome in this type of reconstruction.(undefined

    Microbiome to Brain:Unravelling the Multidirectional Axes of Communication

    Get PDF
    The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome

    Tendon and ligament as novel cell sources for engineering the knee meniscus.

    No full text
    ObjectiveThe application of cell-based therapies in regenerative medicine is hindered by the difficulty of acquiring adequate numbers of competent cells. For the knee meniscus in particular, this may be solved by harvesting tissue from neighboring tendons and ligaments. In this study, we have investigated the potential of cells from tendon and ligament, as compared to meniscus cells, to engineer scaffold-free self-assembling fibrocartilage.MethodSelf-assembling meniscus-shaped constructs engineered from a co-culture of articular chondrocytes and either meniscus, tendon, or ligament cells were cultured for 4 weeks with TGF-β1 in serum-free media. After culture, constructs were assessed for their mechanical properties, histological staining, gross appearance, and biochemical composition including cross-link content. Correlations were performed to evaluate relationships between biochemical content and mechanical properties.ResultsIn terms of mechanical properties as well as biochemical content, constructs engineered using tenocytes and ligament fibrocytes were found to be equivalent or superior to constructs engineered using meniscus cells. Furthermore, cross-link content was found to be correlated with engineered tissue tensile properties.ConclusionTenocytes and ligament fibrocytes represent viable cell sources for engineering meniscus fibrocartilage using the self-assembling process. Due to greater cross-link content, fibrocartilage engineered with tenocytes and ligament fibrocytes may maintain greater tensile properties than fibrocartilage engineered with meniscus cells
    corecore