480 research outputs found

    Evolution of replication efficiency following infection with a molecularly cloned feline immunodeficiency virus of low virulence

    Get PDF
    The development of an effective vaccine against human immunodeficiency virus is considered to be the most practicable means of controlling the advancing global AIDS epidemic. Studies with the domestic cat have demonstrated that vaccinal immunity to infection can be induced against feline immunodeficiency virus (FIV); however, protection is largely restricted to laboratory strains of FIV and does not extend to primary strains of the virus. We compared the pathogenicity of two prototypic vaccine challenge strains of FIV derived from molecular clones; the laboratory strain PET<sub>F14</sub> and the primary strain GL8<sub>414</sub>. PET<sub>F14</sub> established a low viral load and had no effect on CD4<sup>+</sup>- or CD8<sup>+</sup>- lymphocyte subsets. In contrast, GL8<sub>414</sub> established a high viral load and induced a significant reduction in the ratio of CD4<sup>+</sup> to CD8<sup>+</sup> lymphocytes by 15 weeks postinfection, suggesting that PET<sub>F14</sub> may be a low-virulence-challenge virus. However, during long-term monitoring of the PET<sub>F14</sub>-infected cats, we observed the emergence of variant viruses in two of three cats. Concomitant with the appearance of the variant viruses, designated 627<sub>W135</sub> and 628<sub>W135</sub>, we observed an expansion of CD8<sup>+</sup>-lymphocyte subpopulations expressing reduced CD8 ß-chain, a phenotype consistent with activation. The variant viruses both carried mutations that reduced the net charge of the V3 loop (K409Q and K409E), giving rise to a reduced ability of the Env proteins to both induce fusion and to establish productive infection in CXCR4-expressing cells. Further, following subsequent challenge of naïve cats with the mutant viruses, the viruses established higher viral loads and induced more marked alterations in CD8<sup>+</sup>-lymphocyte subpopulations than did the parent F14 strain of virus, suggesting that the E409K mutation in the PET<sub>F14</sub> strain contributes to the attenuation of the virus

    Modelling applications of photonic bandgap fibres

    No full text
    Photonic crystal fibres (PCFs)[1] are one of the most exciting developments in the field of photonics that has emerged in recent years. Not only have they already led to cheap all-fibre high brightness white light sources and have sparked a renaissance in the field of nonlinear optics but they also have the potential to dramatically change the next generation of telecommunication systems. PCFs can be split into two categories, the first have a solid core and guide light by modified total internal reflection, while the second photonic bandgap fibres (PBF) guide light by photonic bandgap effects and typically have a low index core compared to the cladding. Also of interest are "arrow" fibres which have a solid core and guide light due to the arrangement of high index defects in the cladding. In this paper we will be concentrating on designing and manipulating the properties of PBFs. etc..

    Phase-field approach to heterogeneous nucleation

    Full text link
    We consider the problem of heterogeneous nucleation and growth. The system is described by a phase field model in which the temperature is included through thermal noise. We show that this phase field approach is suitable to describe homogeneous as well as heterogeneous nucleation starting from several general hypotheses. Thus we can investigate the influence of grain boundaries, localized impurities, or any general kind of imperfections in a systematic way. We also put forward the applicability of our model to study other physical situations such as island formation, amorphous crystallization, or recrystallization.Comment: 8 pages including 7 figures. Accepted for publication in Physical Review

    Impaired CD4 T Cell Memory Response to Streptococcus pneumoniae Precedes CD4 T Cell Depletion in HIV-Infected Malawian Adults

    Get PDF
    Objective: Invasive pneumococcal disease (IPD) is a leading cause of morbidity and mortality in HIV-infected African Adults. CD4 T cell depletion may partially explain this high disease burden but those with relatively preserved T cell numbers are still at increased risk of IPD. This study evaluated the extent of pneumococcal-specific T cell memory dysfunction in asymptomatic HIV infection early on in the evolution of the disease. Methods: Peripheral blood mononuclear cells were isolated from asymptomatic HIV-infected and HIV-uninfected Malawian adults and stained to characterize the underlying degree of CD4 T cell immune activation, senescence and regulation. Pneumococcal-specific T cell proliferation, IFN-c, IL-17 production and CD154 expression was assessed using flow cytometry and ELISpot. Results: We find that in asymptomatic HIV-infected Malawian adults, there is considerable immune disruption with an increase in activated and senescent CD4+CD38+PD-1+ and CD4+CD25highFoxp3+ Treg cells. In the context of high pneumococcal exposure and therefore immune stimulation, show a failure in pneumococcal-specific memory T cell proliferation, skewing of T cell cytokine production with preservation of interleukin-17 but decreased interferon-gamma responses, and failure of activated T cells to express the co-stimulatory molecule CD154. Conclusion: Asymptomatic HIV-infected Malawian adults show early signs of pneumococcal- specific immune dysregulation with a shift in the balance of CD4 memory, T helper 17 cells and Treg. Together these data offer a mechanistic understanding of how antigen-specific T cell dysfunction occurs prior to T cell depletion and may explain the early susceptibility to IPD in those with relatively preserved CD4 T cell numbers

    Runx1 orchestrates sphingolipid metabolism and glucocorticoid resistance in lymphomagenesis

    Get PDF
    The three-membered RUNX gene family includes RUNX1, a major mutational target in human leukemias, and displays hallmarks of both tumour suppressors and oncogenes. In mouse models the Runx genes appear to act as conditional oncogenes, as ectopic expression is growth suppressive in normal cells but drives lymphoma development potently when combined with over-expressed Myc or loss of p53. Clues to underlying mechanisms emerged previously from murine fibroblasts where ectopic expression of any of the Runx genes promotes survival through direct and indirect regulation of key enzymes in sphingolipid metabolism associated with a shift in the ‘sphingolipid rheostat’ from ceramide to sphingosine-1-phosphate (S1P). Testing of this relationship in lymphoma cells was therefore a high priority. We find that ectopic expression of Runx1 in lymphoma cells consistently perturbs the sphingolipid rheostat, while an essential physiological role for Runx1 is revealed by reduced S1P levels in normal spleen after partial Cre-mediated excision. Furthermore we show that ectopic Runx1 expression confers increased resistance of lymphoma cells to glucocorticoid-mediated apoptosis, and elucidate the mechanism of cross-talk between glucocorticoid and sphingolipid metabolism through Sgpp1. Dexamethasone potently induces expression of Sgpp1 in T-lymphoma cells and drives cell death which is reduced by partial knockdown of Sgpp1 with shRNA or direct transcriptional repression of Sgpp1 by ectopic Runx1. Together these data show that Runx1 plays a role in regulating the sphingolipid rheostat in normal development and that perturbation of this cell fate regulator contributes to Runx-driven lymphomagenesis

    Vaccination with an Inactivated Virulent Feline Immunodeficiency Virus Engineered to Express High Levels of Env

    Get PDF
    An inactivated virus vaccine was prepared from a pathogenic isolate of feline immunodeficiency virus containing a mutation that eliminated an endocytic sorting signal in the envelope glycoprotein, increasing its expression on virions. Cats immunized with inactivated preparations of this modified virus exhibited strong titers of antibody to Env by enzyme-linked immunosorbent assay. Evidence of protection following challenge demonstrated the potential of this approach to lentiviral vaccination

    Establishing haematological and biochemical reference intervals for free-ranging Scottish golden eagle nestlings (Aquila chrysaetos)

    Get PDF
    Health assessment of individuals is an important aspect of monitoring endangered wildlife populations. Haematological and biochemical values are a common health assessment tool, and whilst reference values are well established for domestic species, they are often not available for wild animal species. This study established 31 haematological and biochemical reference intervals for golden eagle (Aquila chrysaetos) nestlings in Scotland, in order to improve the understanding of the species’ health and support conservation efforts. Reference intervals were created from 47 nestlings (ages 2–7.5 weeks old) across 37 nests, to date, the largest sample of wild individuals of this species and age cohort sampled for these purposes. Upper reference intervals for concentrations of lymphocytes, total protein, cholesterol, triglycerides, uric acid, and monocytes, calculated in this study, are higher than those found for adult raptors and the interval span is higher than that observed in adult raptors for concentrations of AST, albumin, eosinophil, LDH, and monocyte count. Statistically significant positive correlations were found with age and concentrations of haemoglobin, lymphocytes, serum pH, and creatine kinase, and significant negative correlations with age for concentrations of thrombocytes, heterophils, total protein, globulin, and lactate dehydrogenase. Packed cell volume was significantly higher for females than males, and concentration of calcium and eosinophils were higher for individuals in good body condition than those in moderate body condition. The reference intervals produced by this study will be of important use to the veterinary and conservation management communities and will aid the long-term monitoring of the Scottish golden eagle population health

    Phosphate steering by Flap Endonuclease 1 promotes 5´-flap specificity and incision to prevent genome instability

    Get PDF
    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 50-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 50-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 50polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 50-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 50-flap specificity and catalysis, preventing genomic instability

    Phosphate steering by Flap Endonuclease 1 promotes 5´-flap specificity and incision to prevent genome instability

    Get PDF
    DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 50-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 50-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 50polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 50-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 50-flap specificity and catalysis, preventing genomic instability
    corecore