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Abstract 

 

An inactivated virus vaccine was prepared from a pathogenic isolate of feline 

immunodeficiency virus containing a mutation that ablated an endocytic sorting signal in 

the envelope glycoprotein, increasing expression on virions.  Cats immunized with 

inactivated preparations of this modified virus exhibited strong ELISA titers to Env.  

Evidence of protection following challenge demonstrated the potential of this approach to 

lentiviral vaccination.   
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Although several animal model systems have been developed to test lentivirus vaccines 18 

and numerous immunogens have been evaluated, the mechanisms underlying protective 

immunity and the essential components of an effective vaccine remain unclear.   FIV 

infection of the domestic cat is a useful model since it represents an immunosuppressive 

lentivirus in its natural host 18,23.  Vaccine-induced protection against FIV infection has 

been achieved using several immunogens, but protection has been restricted mainly to 

viruses of low virulence 8, with both inactivated virus vaccines and molecularly derived 

vaccines having been ineffective at protecting cats against homologous challenge with a 

pathogenic isolate9,11.  Previous studies have indicated that Env is an important 

component of efficacious vaccines, to stimulate cytotoxic T cells (CTL) and neutralizing 

antibodies (VNA)5,10.  To attempt to improve immunogenicity, our strategy was to 

prepare a vaccine from a pathogenic clone of FIV-GL8 engineered to express high levels 

of Env by means of a mutation preventing Env endocytosis.  In this way we aimed to 

reproduce high levels of Env in a native conformation.   

 

First we confirmed that FIV Env was endocytosed from the cell surface, as had been 

demonstrated for SIV Env 20.  Immunofluorescence microscopy of FIV-infected CrFK 

cells incubated at 4oC with the anti-FIV Env monoclonal antibody vpg71.2 22 

demonstrated only low surface expression compared with control antibody recognising 

CD29 (4B4).  However, when cells were incubated with antibody at 37oC, a marked 

increase in fluorescence was noted in intracellular sites (Figure 1a).  These data indicated 

that at 37oC Env was transiently expressed on the cell surface and then internalized.  In 

contrast, no change in the level of fluorescence was seen on the cells incubated with the 

control antibody at 4 or 37oC.   

 

The observation that FIV Env was rapidly endocytozed from the surface of infected cells, 

similar to other lentivirus Envs 17, led us to identify the tyrosine-containing endocytosis 

motif GYTVI, located between positions 820 and 824 of the env gene of the GL8Mya 
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molecular clone 9, corresponding to the GYxxΦ motif conserved in all SIV and HIV Envs 
3,4(Figure 1b).  To test the effect of ablating this motif in FIV env, we constructed the 

mutant GL8YI based on the GL8Mya molecular clone by polymerase chain reaction (PCR)-

mediated mutagenesis, incorporating the mutation Y821I.  Stocks of GL8YI were prepared 

following transfection in 3T3 cells using Superfect transfection reagent (QIAgen) 

followed by recovery into Mya-1 cells 19.  Evaluation of Env surface expression by FACS 

on Mya-1 cells infected with either GL8YI or the wild type GL8 clone (GL8WT) revealed 

that although GL8YI and GL8WT produced similar levels of FIV p24 when measured by 

ELISA (data not shown), surface expression of Env was markedly greater in cells 

infected with GL8YI (49%) compared to GL8WT (2.6%).  Furthermore, we compared the 

Env content of GL8WT and GL8YI by adsorbing equal amounts of the two viruses onto 

Galanthus nivalis lectin (GN)-coated microwells and comparing the ability of the 

adsorbed virions to bind FIV immune sera, using the method described previously6.  

Although similar amounts of p24 were present by immunoblotting (data not shown), 

GL8YI bound considerably more antibody than GL8WT, indicating a higher Env content in 

the mutated virions (Figure 1c).  Subsequently, an inactivated virus vaccine was prepared 

from paraformaldehyde-treated culture fluids of GL8YI-infected Mya-1 cells as described 

previously 12.   

 

Eight 11-week-old kittens were randomly divided into 2 groups of 4.  One group of 

kittens  (V1 to V4) was immunized subcutaneously at 0, 3 and 7 weeks with 250 µg 

inactivated GL8YI virus in 0.5 ml PBS and 0.5 ml MF 59.0 citrate adjuvant.  The controls 

(C1 to C4) received 0.5 ml PBS and 0.5 ml MF 59.0 citrate adjuvant at the same times.  

At week 10, three weeks following the third inoculation, no virus could be isolated from 

peripheral blood mononuclear cells (PBMC), confirming that the inactivated virus 

vaccine did not contain any residual infectivity for cats.   

 

FIV gp140 Env, consisting of the entire surface unit and the ectodomain of the 

transmembrane domain, was used as antigen in an ELISA to measure anti-Env antibodies 
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in cat sera.  The env gene of the FIV-GL8 molecular clone GL8414 
9 was cloned by PCR 

into pPPI4 2 using KasI and BstB1, with the 3’ primer containing a C-terminal D7324 

epitope tag 1. An antigen-capture ELISA was developed, based on one described 

previously 1 in which supernatant containing FIV Env (approximately 1 µg/ml) derived 

from 293T cell transfections was captured using sheep antibody raised against the D7324 

epitope tag (Cliniqa, CA). Bound antibody was detected using goat anti-cat IgG Fc 

alkaline phosphatase conjugate (Accurate Chemical and Scientific, Westbury, NY) at 

1:5000 and the signal was amplified and developed as described previously1.  GL8YI 

vaccinates developed anti-Env antibodies, detectable by ELISA in all vaccinates (Table 

1), with the highest titer in vaccinate V4.   

 

To test whether the anti-Env antibodies were neutralizing, VNA were measured against 

10 50% tissue culture infectious doses (TCID50) of the GL8 molecular clone using MBM 

cells as previously described6, with or without prior adsorption of test sera with MBM or 

Mya-1 cells.  Vaccinates V1, V2 and V4 developed VNA against the GL8 challenge 

virus, provided that the sera were absorbed with either MBM or Mya-1 cells prior to 

testing.  It has been reported that the presence of antibodies to substrate cells can mask 

detection of VNA in vaccinated cats sera6 and in this study absorption of sera with Mya-1 

cells eliminated this in 2/4 sera whereas absorption of sera with the substrate MBM cells 

revealed neutralizing antibodies in 3/4 sera (Table 1). 

 

To assess whether immunization with GL8YI would protect against virulent challenge, all 

eight cats were challenged intraperitoneally with 10 50% infectious doses (ID50) of virus 

derived from the GL8 molecular clone at week 10.  The challenge virus was prepared 

from the GL8414 9 molecular clone of FIV by transfection of the murine fibroblast cell 

line 3T3 using Superfect transfection reagent (QIAgen, Valencia,CA.). 72 hours post 

transfection, supernatants were harvested, 0.45µm filtered and used to infect the IL2-

dependent feline T cell line Q201 21.  The infected cultures were monitored visually for 

cytopathicity and for the production of FIV p24 by enzyme-linked immunosorbent assay 
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(ELISA, PetCheck FIV antigen ELISA, IDEXX Corp., Portland, Maine, USA). 

Supernatants were collected at peak cytopathicity/ p24 production, 0.45µm filtered, 

dispensed into 1ml aliquots and stored at –70oC.  Previously we had demonstrated that 

infection of cats with a similar dose of this challenge stock led to a high proviral burden 

that was maintained throughout the acute phase of infection.  Coincident with the sharp 

rise in proviral load was a marked decline in the CD4:CD8 ratio 13, consistent with the 

pathogenic potential of the GL8 molecular clone challenge stock. 

 

Cultures of PBMC isolated from samples from all cats taken 3 weeks post challenge were 

positive by FIV p24 antigen ELISA after 7 days in culture, indicating that all of the 

vaccinated and control cats became infected following challenge.  However, we noted 

that a smaller proportion of PBMC was infected in three vaccinates compared to the 

remaining vaccinate (cat V3) and the control cats (data not shown) and so, to provide 

more quantitative information on the viral burdens following challenge, we examined 

proviral loads in PBMC at intervals until 21 weeks post challenge by real-time PCR7 

using oligonucleotides designed to detect a variety of FIV A-subtype isolates as 

described14-16 (Figure 2a).  The mean proviral load was consistently lower in the 

vaccinates than the controls, although the difference did not reach statistical significance 

because of the high proviral load of vaccinate V3 (Figure 2b).  Furthermore, the peak 

proviral loads in PBMC of 3/4 vaccinates were markedly lower than those of the controls 

(Figure 2c).  Supporting evidence that the virulent challenge was controlled in 3/4 

vaccinates was provided by the analysis of tissues sampled post mortem, 21 weeks after 

challenge (data not shown).  The highest proviral burden in splenocytes was in vaccinate 

V3, consistent with the high proviral load in the PBMC of this cat throughout the study.  

In contrast, the proviral loads of the remaining vaccinates were lower compared to the 

controls in both splenocytes and PBMC, although again these differences were not 

statistically significant.  Proviral DNA was detected in cells isolated from the mesenteric 

lymph node (MLN) from all of the control cats but only a single vaccinate (cat V3).  The 

high proviral loads detected in cat V3 were inconsistent with the remaining three 

vaccinates, providing no evidence of even partial protection against the challenge; indeed 
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the viral and proviral loads measured in this cat usually exceeded the loads in the 

unvaccinated, control cats, suggesting that the infection may have been enhanced.  Taken 

together, these data indicate that a larger vaccine trial is merited to test the applicability 

of this approach to lentiviral vaccines in general.   

 

 The mutated virus preparation did express increased levels of Env and immunization 

induced anti-Env responses in 4/4 cats and VNA in 3/4 cats.  The pilot challenge study 

led to encouraging results and, although vaccination did not prevent infection with the 

pathogenic GL8 molecular clone, the course of infection was modified in the cats that 

developed VNA, with decreased viral burdens compared to the controls.  Vaccinate V3, 

which developed very high viral and proviral loads following challenge, did not develop 

VNA.  It is tempting to speculate, therefore, that the VNA detected in the remaining three 

vaccinates played a role in reducing the viral burden. Thus the data indicate that Env is an 

important constituent of an effective lentiviral vaccine and encourage further studies to 

optimize immune responses against virulent isolates, since the GL8 molecular clone is 

pathogenic and achieves high virus loads similar to those described for other pathogenic 

strains (our unpublished observations).  It is possible that the quality of the humoral 

immune response generated against Env was sub optimal, since the vaccine appeared to 

induce VNA inefficiently.  Therefore, future studies might address methods of improving 

the quality of the VNA responses since the generation of protective immune responses in 

the domestic cat against challenge with the GL8 isolate would provide encouragement for 

the testing of similar strategies to increase the quantity of Env on HIV-1 or HIV-2 

virions. 
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Figure Legends 

 

Figure 1.  (a) Immunofluorescence of FIV-infected CrFK cells incubated with antibodies 

detecting either FIV Env or CD29 for 1 h at either 4oC or 37oC. (b) Conservation of 

endocytosis motif between feline and primate lentiviruses. (c) Relative Env content in the 

GL8WT (■) and GL8YI (□) clones was determined by measuring the ability of virions to 

bind anti-FIV antibody.  Equal amounts of gradient-purified virions of the two clones 

were adsorbed onto GN-coated microwells and then probed for the ability to bind IgG 

from cat sera diluted 1:100.  Cat sera from a GL8-infected cat, a PET-infected cat, and a 

serum pool from 5 uninfected control cats were used. The experiment was repeated twice 

with comparable results.   

 

Figure 2. Proviral loads in vaccinated (open symbols) and control (closed symbols) cats 

measured at intervals post challenge by real-time PCR.  The proviral loads of the 

individual cats (V3 represented by ∆) are shown in (a), the mean loads +/- SEM of the 

vaccinates (Ο) and the controls (•) are shown in (b) and the peak proviral loads in PBMC 

from vaccinated (□) and control (■) cats are shown in (c).  
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Table 1. Anti Env antibody responses and neutralizing activity of day of challenge 

vaccine and control sera.   

 

 Anti-Env titer VNA titer1 

Serum Determined by Cells used for sera adsorption 

 ELISA None MBM Mya-1 

Vaccinated     

V1 14 000 <8 128 128 

V2 5 000 <8 16 64 

V3 10 000 <8 <8 <8 

V4 80 000 <8 16 <8 

Control     

C1 <1 000 <8 <8 <8 

C2 <1 000 <8 <8 <8 

C3 <1 000 <8 <8 <8 

C4 <1 000 <8 <8 <8 

 
1 VNA titers were measured on untreated sera as well as cell-adsorbed sera as indicated 

and are expressed as the reciprocal of the highest serum dilution that gave 50% inhibition 

of reverse transcriptase production by 10 50% TCID50 GL8 clone mixed with the 

corresponding dilution of a pool of 10 normal cat sera.  The experiment was repeated 

twice, with comparable results.  
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