16,542 research outputs found
Pump- and Probe-polarization Analyses of Ultrafast Carrier Dynamics in Organic Superconductors
We investigated photo-excited carrier relaxation dynamics in the strongly correlated organic superconductors kappa-(BEDT-TTF)(2)Cu(NCS)(2) and kappa-(BEDT-TTF)(2)Cu[N(CN)(2)]Br, using different polarizations of pump and probe pulses. Below the glasslike transition temperature (T (g)) anisotropic responses for probe polarization were observed in both compounds. Decomposing the data into anisotropic and isotropic components, we found the anisotropic component shows no pump polarization dependence, meaning that dissipative excitation process was dominant for the anisotropic carrier relaxation. This behavior indicates that the appearance of anisotropic responses can be associated with spatial symmetry breaking due to structural change of BEDT-TTF molecules
Hes6 acts in a positive feedback loop with the neurogenins to promote neuronal differentiation
During the development of the vertebrate nervous system, neurogenesis is promoted by proneural bHLH proteins such as the neurogenins, which act as potent transcriptional activators of neuronal differentiation genes. The pattern by which these proteins promote neuronal differentiation is thought to be governed by inhibitors, including a class of transcriptional repressors called the WRPW-bHLH proteins, which are similar to Drosophila proteins encoded by hairy and genes in the enhancer of split complex (E-(SPL)-C). Here, we describe the isolation and characterization of Hes6, which encodes a novel WRPW-bHLH protein expressed during neurogenesis in mouse and Xenopus embryos. We show that Hes6 expression follows that of neurogenins but precedes that of the neuronal differentiation genes. We provide several lines of evidence to show that Hes6 expression occurs in developing neurons and is induced by the proneural bHLH proteins but not by the Notch pathway. When ectopically expressed in Xenopus embryos, Hes6 promotes neurogenesis. The properties of Hes6 distinguish it from other members of the WRPW-bHLH family in vertebrates, and suggest that it acts in a positive-feedback loop with the proneural bHLH proteins to promote neuronal differentiation
Impacts of Mixed-Wettability on Brine Drainage and Supercritical CO2 Storage Efficiency in a 2.5-D Heterogeneous Micromodel
Geological carbon storage (GCS) involves unstable drainage processes, the formation of patterns in a morphologically unstable interface between two fluids in a porous medium during drainage. The unstable drainage processes affect CO2 storage efficiency and plume distribution and can be greatly complicated by the mixed-wet nature of rock surfaces common in hydrocarbon reservoirs where supercritical CO2 (scCO2) is used in enhanced oil recovery. We performed scCO2 injection (brine drainage) experiments at 8.5 MPa and 45Ā°C in heterogeneous micromodels, two mixed-wet with varying water- and intermediate-wet patches, and one water-wet. The flow regime changes from capillary fingering through crossover to viscous fingering in the micromodels of the same pore geometry but different wetting surfaces at displacement rates with logCa (capillary number) increasing from ā8.1 to ā4.4. While the mixed-wet micromodel with uniformly distributed intermediate-wet patches yields ~0.15 scCO2 saturation increase at both capillary fingering and crossover flow regimes (ā8.1 ā¤ logCa ā¤ ā 6.1), the one heterogeneous wetting to scCO2 results in ~0.09 saturation increase only at the crossover flow regime (ā7.1 ā¤ logCa ā¤ ā 6.1). The interconnected flow paths in the former are quantified and compared to the channelized scCO2 flow through intermediate-wet patches in the latter by topological analysis. At logCa > ā 6.1 (near well), the effects of wettability and pore geometry are suppressed by strong viscous force. Both scCO2 saturation and distribution suggest the importance of wettability on CO2 storage efficiency and plume shape in reservoirs and capillary leakage through caprock at GCS conditions
Dust Size Growth and Settling in a Protoplanetary Disk
We have studied dust evolution in a quiescent or turbulent protoplanetary
disk by numerically solving coagulation equation for settling dust particles,
using the minimum mass solar nebular model. As a result, if we assume an
ideally quiescent disk, the dust particles settle toward the disk midplane to
form a gravitationally unstable layer within 2x10^3 - 4x10^4 yr at 1 - 30 AU,
which is in good agreement with an analytic calculation by Nakagawa, Sekiya, &
Hayashi (1986) although they did not take into account the particle size
distribution explicitly. In an opposite extreme case of a globally turbulent
disk, on the other hand, the dust particles fluctuate owing to turbulent motion
of the gas and most particles become large enough to move inward very rapidly
within 70 - 3x10^4 yr at 1 - 30 AU, depending on the strength of turbulence.
Our result suggests that global turbulent motion should cease for the
planetesimal formation in protoplanetary disks.Comment: 27 pages, 8 figures, accepted for publication in the Ap
Virtual Origin of Incompressible and Supersonic Turbulent Bluff-Body Wakes
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77097/1/AIAA-10928-198.pd
- ā¦