252 research outputs found

    Study of an Alternate Mechanism for the Origin of Fermion Generations

    Full text link
    In usual extended technicolor (ETC) theories based on the group SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}, the quarks of charge 2/3 and -1/3 and the charged leptons of all generations arise from ETC fermion multiplets transforming according to the fundamental representation. Here we investigate a different idea for the origin of SM fermion generations, in which quarks and charged leptons of different generations arise from ETC fermions transforming according to different representations of SU(NETC)ETC{\rm{SU}(N_{ETC}})_{ETC}. Although this mechanism would have the potential, {\it a priori}, to allow a reduction in the value of NETCN_{ETC} relative to conventional ETC models, we show that, at least in simple models, it is excluded by the fact that the technicolor sector is not asymptotically free or by the appearance of fermions with exotic quantum numbers which are not observed.Comment: 6 pages, late

    Remarks on probability theory and TMJ diagnosis

    Full text link
    On the basis of the classic concepts of events and probability theory, this article analyzes some recently introduced diagnostic probability concepts as they pertain to temporomandibular joint (TMJ) diseases and disorders.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/74644/1/j.1365-2842.1992.tb01486.x.pd

    A hybrid approach to conjunctive partial evaluation of logic programs

    Full text link
    Conjunctive partial deduction is a well-known technique for the partial evaluation of logic programs. The original formulation follows the so called online approach where all termination decisions are taken on-the-fly. In contrast, offline partial evaluators first analyze the source program and produce an annotated version so that the partial evaluation phase should only follow these annotations to ensure the termination of the process. In this work, we introduce a lightweight approach to conjunctive partial deduction that combines some of the advantages of both online and offline styles of partial evaluation. © 2011 Springer-Verlag.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under grant TIN2008-06622-C03-02 and by the Generalitat Valenciana under grant ACOMP/2010/042.Vidal Oriola, GF. (2011). A hybrid approach to conjunctive partial evaluation of logic programs. En Logic-Based Program Synthesis and Transformation. Springer Verlag (Germany). 6564:200-214. https://doi.org/10.1007/978-3-642-20551-4_13S2002146564Ben-Amram, A., Codish, M.: A SAT-Based Approach to Size Change Termination with Global Ranking Functions. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 218–232. Springer, Heidelberg (2007)Bruynooghe, M., De Schreye, D., Martens, B.: A General Criterion for Avoiding Infinite Unfolding during Partial Deduction of Logic Programs. In: Saraswat, V., Ueda, K. (eds.) Proc. 1991 Int’l Symp. on Logic Programming, pp. 117–131 (1991)Christensen, N.H., Glück, R.: Offline Partial Evaluation Can Be as Accurate as Online Partial Evaluation. ACM Transactions on Programming Languages and Systems 26(1), 191–220 (2004)Codish, M., Taboch, C.: A Semantic Basis for the Termination Analysis of Logic Programs. Journal of Logic Programming 41(1), 103–123 (1999)De Schreye, D., Glück, R., Jørgensen, J., Leuschel, M., Martens, B., Sørensen, M.H.: Conjunctive Partial Deduction: Foundations, Control, Algorihtms, and Experiments. Journal of Logic Programming 41(2&3), 231–277 (1999)Hruza, J., Stepánek, P.: Speedup of logic programs by binarization and partial deduction. TPLP 4(3), 355–380 (2004)Jones, N.D., Gomard, C.K., Sestoft, P.: Partial Evaluation and Automatic Program Generation. Prentice-Hall, Englewood Cliffs (1993)Leuschel, M.: Homeomorphic Embedding for Online Termination of Symbolic Methods. In: Mogensen, T.Æ., Schmidt, D.A., Sudborough, I.H. (eds.) The Essence of Computation. LNCS, vol. 2566, pp. 379–403. Springer, Heidelberg (2002)Leuschel, M.: The DPPD (Dozens of Problems for Partial Deduction) Library of Benchmarks (2007), http://www.ecs.soton.ac.uk/~mal/systems/dppd.htmlLeuschel, M., Elphick, D., Varea, M., Craig, S., Fontaine, M.: The Ecce and Logen Partial Evaluators and Their Web Interfaces. In: Proc. of PEPM 2006, pp. 88–94. IBM Press (2006)Leuschel, M., Vidal, G.: Fast Offline Partial Evaluation of Large Logic Programs. In: Hanus, M. (ed.) LOPSTR 2008. LNCS, vol. 5438, pp. 119–134. Springer, Heidelberg (2009)Lloyd, J.W., Shepherdson, J.C.: Partial Evaluation in Logic Programming. Journal of Logic Programming 11, 217–242 (1991)Somogyi, Z.: A System of Precise Modes for Logic Programs. In: Shapiro, E.Y. (ed.) Proc. of Third Int’l Conf. on Logic Programming, pp. 769–787. The MIT Press, Cambridge (1986

    Implementation of the type III seesaw model in FeynRules/MadGraph and prospects for discovery with early LHC data

    Get PDF
    We discuss the implementation of the "minimal" type III seesaw model, i.e. with one fermionic triplet, in FeynRules/MadGraph. This is the first step in order to realize a real study of LHC data recorded in the LHC detectors. With this goal in mind, we comment on the possibility of discovering this kind of new physics at the LHC running at 7 TeV with a luminosity of few fb^-1.Comment: 28 pages, 7 figures, Tables with cross sections are updated, a channel was missing. Version to appear on Eur. Phys. J.

    Gauge Formulation for Higher Order Gravity

    Get PDF
    This work is an application of the second order gauge theory for the Lorentz group, where a description of the gravitational interaction is obtained which includes derivatives of the curvature. We analyze the form of the second field strenght, G=F+fAFG=\partial F +fAF, in terms of geometrical variables. All possible independent Lagrangians constructed with quadratic contractions of FF and quadratic contractions of GG are analyzed. The equations of motion for a particular Lagrangian, which is analogous to Podolsky's term of his Generalized Electrodynamics, are calculated. The static isotropic solution in the linear approximation was found, exhibiting the regular Newtonian behaviour at short distances as well as a meso-large distance modification.Comment: Published versio

    Propagators and WKB-exactness in the plane wave limit of AdSxS

    Full text link
    Green functions for the scalar, spinor and vector fields in a plane wave geometry arising as a Penrose limit of AdS×SAdS\times S are obtained. The Schwinger-DeWitt technique directly gives the results in the plane wave background, which turns out to be WKB-exact. Therefore the structural similarity with flat space results is unveiled. In addition, based on the local character of the Penrose limit, it is claimed that for getting the correct propagators in the limit one can rely on the first terms of the direct geodesic contribution in the Schwinger-DeWitt expansion of the original propagators . This is explicitly shown for the Einstein Static Universe, which has the same Penrose limit as AdS×SAdS\times S with equal radii, and for a number of other illustrative cases.Comment: 18 pages, late

    Dark matter in UED : the role of the second KK level

    Full text link
    We perform a complete calculation of the relic abundance of the KK-photon LKP in the universal extra dimension model including all coannihilation channels and all resonances. We show that the production of level 2 particles which decay dominantly into SM particles contribute significantly to coannihilation processes involving level 1 KK-leptons. As a result the preferred dark matter scale is increased to R1=1.3R^{-1}=1.3~TeV. A dark matter candidate at or below the TeV scale can only be found in the non-minimal model by reducing the mass splittings between the KK-particles and the LKP. The LKP nucleon scattering cross section is typically small, σ<1010\sigma < 10^{-10}~pb, unless the KK-quarks are nearly degenerate with the LKP.Comment: 18 pages, 6 figure

    Logarithmic Corrections to Rotating Extremal Black Hole Entropy in Four and Five Dimensions

    Full text link
    We compute logarithmic corrections to the entropy of rotating extremal black holes using quantum entropy function i.e. Euclidean quantum gravity approach. Our analysis includes five dimensional supersymmetric BMPV black holes in type IIB string theory on T^5 and K3 x S^1 as well as in the five dimensional CHL models, and also non-supersymmetric extremal Kerr black hole and slowly rotating extremal Kerr-Newmann black holes in four dimensions. For BMPV black holes our results are in perfect agreement with the microscopic results derived from string theory. In particular we reproduce correctly the dependence of the logarithmic corrections on the number of U(1) gauge fields in the theory, and on the angular momentum carried by the black hole in different scaling limits. We also explain the shortcomings of the Cardy limit in explaining the logarithmic corrections in the limit in which the (super)gravity description of these black holes becomes a valid approximation. For non-supersymmetric extremal black holes, e.g. for the extremal Kerr black hole in four dimensions, our result provides a stringent testing ground for any microscopic explanation of the black hole entropy, e.g. Kerr/CFT correspondence.Comment: LaTeX file, 50 pages; v2: added extensive discussion on the relation between boundary condition and choice of ensemble, modified analysis for slowly rotating black holes, all results remain unchanged, typos corrected; v3: minor additions and correction

    Energy-Momentum Tensor of Particles Created in an Expanding Universe

    Get PDF
    We present a general formulation of the time-dependent initial value problem for a quantum scalar field of arbitrary mass and curvature coupling in a FRW cosmological model. We introduce an adiabatic number basis which has the virtue that the divergent parts of the quantum expectation value of the energy-momentum tensor are isolated in the vacuum piece of , and may be removed using adiabatic subtraction. The resulting renormalized is conserved, independent of the cutoff, and has a physically transparent, quasiclassical form in terms of the average number of created adiabatic `particles'. By analyzing the evolution of the adiabatic particle number in de Sitter spacetime we exhibit the time structure of the particle creation process, which can be understood in terms of the time at which different momentum scales enter the horizon. A numerical scheme to compute as a function of time with arbitrary adiabatic initial states (not necessarily de Sitter invariant) is described. For minimally coupled, massless fields, at late times the renormalized goes asymptotically to the de Sitter invariant state previously found by Allen and Folacci, and not to the zero mass limit of the Bunch-Davies vacuum. If the mass m and the curvature coupling xi differ from zero, but satisfy m^2+xi R=0, the energy density and pressure of the scalar field grow linearly in cosmic time demonstrating that, at least in this case, backreaction effects become significant and cannot be neglected in de Sitter spacetime.Comment: 28 pages, Revtex, 11 embedded .ps figure

    Logarithmic Corrections to N=2 Black Hole Entropy: An Infrared Window into the Microstates

    Full text link
    Logarithmic corrections to the extremal black hole entropy can be computed purely in terms of the low energy data -- the spectrum of massless fields and their interaction. The demand of reproducing these corrections provides a strong constraint on any microscopic theory of quantum gravity that attempts to explain the black hole entropy. Using quantum entropy function formalism we compute logarithmic corrections to the entropy of half BPS black holes in N=2 supersymmetric string theories. Our results allow us to test various proposals for the measure in the OSV formula, and we find agreement with the measure proposed by Denef and Moore if we assume their result to be valid at weak topological string coupling. Our analysis also gives the logarithmic corrections to the entropy of extremal Reissner-Nordstrom black holes in ordinary Einstein-Maxwell theory.Comment: LaTeX file, 66 page
    corecore