13 research outputs found

    An updated analysis of eps'/eps in the standard model with hadronic matrix elements from the chiral quark model

    Full text link
    We discuss the theoretical and experimental status of the CP violating ratio eps'/eps. We revise our 1997 standard-model estimate-based on hadronic matrix elements computed in the chiral quark model up to O(p^4) in the chiral expansion-by including an improved statistical analysis of the uncertainties and updated determination of the Cabibbo-Kobayashi-Maskawa elements and other short-distance parameters. Using normal distributions for the experimental input data we find Re eps'/eps = (2.2 \pm 0.8) x 10^{-3}, whereas a flat scanning gives 0.9 x 10^{-3} < Re eps'/eps < 4.8 x 10^{-3}. Both results are in agreement with the current experimental data. The key element in our estimate is, as before, the fit of the Delta I=1/2 rule, which allows us to absorb most of the theoretical uncertainties in the determination of the model-dependent parameters in the hadronic matrix elements. Our semi-phenomenological approach leads to numerical stability against variations of the renormalization scale and scheme dependence of the short- and long-distance components. The same dynamical mechanism at work in the selection rule also explains the larger value obtained for \ratio with respect to other estimates. A coherent picture of K -> pi pi decays is thus provided.Comment: 15 pages, 11 figures, RevTeX, discussion updated, refs adde

    B -> rho semileptonic decays and vertical bar V-ub vertical bar

    No full text
    We reevaluate the B -> rho l(+) nu(l) decay width as a full B. pi pi iota(+)nu iota four-particle decay, in which the two final pions are produced via an intermediate. meson. The decay width can be written as a convolution of the B -> rho l(+) nu(l) decay width, for an off-shell., with the.. pp line shape. This allows us to fully incorporate the effects of the finite. meson width and a better comparison with actual experiments. We use an Omn s representation to provide the dependence of the B.. semileptonic form factors on q2. The Omn s subtraction constants and the overall normalization parameter jVubj are fitted to light cone sum rules and lattice QCD theoretical form-factor calculations, in the low and high q2 regions, respectively, together to the CLEO, BABAR, and Belle experimental partial branching fraction distributions. The extracted value from this global fit is jVubj d3.40 +/- 0.15_ x 10-3, in agreement with jVubj extracted using all other inputs in Cabibbo-Kobayashi-Maskawa fits and the exclusive semileptonic B. p channel, but showing a clear disagreement with jVubj extracted from inclusive semileptonic b. u decays. As estimated by [U.-G. Mei beta ner andW. Wang, J. High Energy Phys. 01 (2014) 107], taking into account the. meson width effects and the actual acceptance of the experiments is essential to render the jVubj determinations from exclusive B. p and B.. decays totally compatible

    Some remarks on thermostatic inclusion problems

    No full text

    Stresses in a long, high mass fraction solid- propellant rocket motor.

    No full text

    On supercavitating flow past a symmetric wedge

    No full text
    corecore