2 research outputs found

    Micellar solubilization of poorly water-soluble drugs: effect of surfactant and solubilizate molecular structure

    No full text
    <p><b>Objective:</b> This study aims to clarify the role of surfactant and drug molecular structures on drug solubility in micellar surfactant solutions.</p> <p><b>Significance:</b> (1) Rationale for surfactant selection is provided; (2) the large data set can be used for validation of the drug solubility parameters used in oral absorption models.</p> <p><b>Methods:</b> Equilibrium solubility of two hydrophobic drugs and one model hydrophobic steroid in micellar solutions of 19 surfactants was measured by HPLC. The drug solubilization locus in the micelles was assessed by UV spectrometry.</p> <p><b>Results:</b> Danazol is solubilized much more efficiently than fenofibrate by ionic surfactants due to ion–dipole interactions between the charged surfactant head groups and the polar steroid backbone. Drug solubilization increases linearly with the increase of hydrophobic chain length for all studied surfactant types. Addition of 1–3 ethylene oxide (EO) units in the head group of dodecyl sulfate surfactants reduces significantly the solubilization of both studied drugs and decreases linearly the solubilization locus polarity of fenofibrate. The locus of fenofibrate solubilization is in the hydrophobic core of nonionic surfactant micelles and in the palisade layer of ionic surfactant micelles.</p> <p><b>Conclusions:</b> Highest drug solubility can be obtained by using surfactants molecules with long chain length coupled with hydrophilic head group that provides additional drug–surfactant interactions (i.e. ion–dipole) in the micelles.</p

    Effect of Cationic Polymers on Foam Rheological Properties

    No full text
    We study the effect of two cationic polymers, with trade names Jaguar C13s and Merquat 100, on the rheological properties of foams stabilized with a mixture of anionic and zwitterionic surfactants (sodium lauryloxyethylene sulfate and cocoamidopropyl betaine). A series of five cosurfactants are used to compare the effect of these polymers on foaming systems with high and low surface dilatational moduli. The experiments revealed that the addition of Jaguar to the foaming solutions leads to (1) a significant increase of the foam yield stress for all systems studied, (2) the presence of consecutive maximum and minimum in the stress vs shear rate rheological curve for foams stabilized by cosurfactants with a high surface modulus (these systems cannot be described by the Herschel–Bulkley model anymore), and (3) the presence of significant foam–wall yield stress for all foaming solutions. These effects are explained with the formation of polymer bridges between the neighboring bubbles in slowly sheared foams (for inside foam friction) and between the bubbles and the confining solid wall (for foam-wall friction). Upon addition of 150 mM NaCl, the effect of Jaguar disappears. The addition of Merquat does not noticeably affect any of the foam rheological properties studied. Optical observations of foam films, formed from all these systems, show a very good correlation between the polymer bridging of the foam film surfaces and the strong polymer effect on the foam rheological properties. The obtained results demonstrate that the bubble–bubble attraction can be used for efficient control of the foam yield stress and foam–wall yield stress, without significantly affecting the viscous friction in sheared foams
    corecore