Effect of Cationic Polymers
on Foam Rheological Properties
- Publication date
- Publisher
Abstract
We study the effect of two cationic polymers, with trade
names
Jaguar C13s and Merquat 100, on the rheological properties of foams
stabilized with a mixture of anionic and zwitterionic surfactants
(sodium
lauryloxyethylene sulfate and cocoamidopropyl betaine). A series of
five cosurfactants are used to compare the effect of these polymers
on foaming systems with high and low surface dilatational moduli.
The experiments revealed that the addition of Jaguar to the foaming
solutions leads to (1) a significant increase of the foam yield stress
for all systems studied, (2) the presence of consecutive maximum and
minimum in the stress vs shear rate rheological curve for foams stabilized
by cosurfactants with a high surface modulus (these systems cannot
be described by the Herschel–Bulkley model anymore), and (3)
the presence of significant foam–wall yield stress for all
foaming solutions. These effects are explained with the formation
of polymer bridges between the neighboring bubbles in slowly sheared
foams (for inside foam friction) and between the bubbles and the confining
solid wall (for foam-wall friction). Upon addition of 150 mM NaCl,
the effect of Jaguar disappears. The addition of Merquat does not
noticeably affect any of the foam rheological properties studied.
Optical observations of foam films, formed from all these systems,
show a very good correlation between the polymer bridging of the foam
film surfaces and the strong polymer effect on the foam rheological
properties. The obtained results demonstrate that the bubble–bubble
attraction can be used for efficient control of the foam yield stress
and foam–wall yield stress, without significantly affecting
the viscous friction in sheared foams