544 research outputs found

    Evolution of small putative group I introns in the SSU rRNA gene locus of Phialophora species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Group I introns (specifically subgroup IC1) are common in the nuclear ribosomal RNA genes of fungi. While most range in length from more than 200 to nearly 1800 nucleotides (nt) in length, several small putative (or degenerate) group I introns have been described that are between 56 and 81 nt. Although small, previously we demonstrated that the <it>Pa</it>SSU intron in the rRNA small subunit gene of <it>Phialophora americana </it>isolate Wang 1046 is capable of <it>in vitro </it>splicing using a standard group I intron pathway, thus qualifying it as a functional ribozyme.</p> <p>Findings</p> <p>Here, we describe eight short putative group I introns, ranging in length from 63 to 75 nt, in the rRNA small subunit genes of <it>Phialophora </it>isolates, a fungal genus that ranges from saprobic to pathogenic on plants and animals. All contain putative pairing regions P1, P7, and P10, as well as a pairing region formed between the middle of the intron and part of the 3' exon. The other pairing regions common in the core of standard group I introns are absent. However, parts of the 3' exon may aid in the stabilization of these small introns. Although the eight putative group I introns were from at least three species of <it>Phialophora</it>, phylogenetic analysis indicated that the eight are monophyletic. They are also monophyletic with the small introns of two lichen-forming fungi, <it>Porpidia crustulata </it>and <it>Arthonia lapidicola</it>.</p> <p>Conclusions</p> <p>The small putative group I introns in <it>Phialophora </it>have common features that may represent group I introns at their minima. They appear to have a single origin as indicated by their monophyly in phylogenetic analyses.</p

    Guidance for reconciling patent rights and disclosure of findings at scientific meetings

    Get PDF
    Open collaboration and sharing of information among scientists at scientific meetings can foster innovation and discovery. However, such sharing can be at odds with potential patenting and commercialization objectives. This tension may be mitigated if certain procedures are followed in the context of scientific meetings. The article first discusses what makes a scientific finding patentable and then sets out four specific patent issues for scientists to consider before attending a scientific meeting and sharing their research. Finally, it provides recommendations on how scientists can best protect their intellectual property rights while sharing information at scientific meetings

    DHODH modulates transcriptional elongation in the neural crest and melanoma

    Get PDF
    Melanoma is a tumour of transformed melanocytes, which are originally derived from the embryonic neural crest. It is unknown to what extent the programs that regulate neural crest development interact with mutations in the BRAF oncogene, which is the most commonly mutated gene in human melanoma1. We have used zebrafish embryos to identify the initiating transcriptional events that occur on activation of human BRAF(V600E) (which encodes an amino acid substitution mutant of BRAF) in the neural crest lineage. Zebrafish embryos that are transgenic for mitfa:BRAF(V600E) and lack p53 (also known as tp53) have a gene signature that is enriched for markers of multipotent neural crest cells, and neural crest progenitors from these embryos fail to terminally differentiate. To determine whether these early transcriptional events are important for melanoma pathogenesis, we performed a chemical genetic screen to identify small-molecule suppressors of the neural crest lineage, which were then tested for their effects on melanoma. One class of compound, inhibitors of dihydroorotate dehydrogenase (DHODH), for example leflunomide, led to an almost complete abrogation of neural crest development in zebrafish and to a reduction in the self-renewal of mammalian neural crest stem cells. Leflunomide exerts these effects by inhibiting the transcriptional elongation of genes that are required for neural crest development and melanoma growth. When used alone or in combination with a specific inhibitor of the BRAF(V600E) oncogene, DHODH inhibition led to a marked decrease in melanoma growth both in vitro and in mouse xenograft studies. Taken together, these studies highlight developmental pathways in neural crest cells that have a direct bearing on melanoma formation

    Short RNA Guides Cleavage by Eukaryotic RNase III

    Get PDF
    In eukaryotes, short RNAs guide a variety of enzymatic activities that range from RNA editing to translation repression. It is hypothesized that pre-existing proteins evolved to bind and use guide RNA during evolution. However, the capacity of modern proteins to adopt new RNA guides has never been demonstrated. Here we show that Rnt1p, the yeast orthologue of the bacterial dsRNA-specific RNase III, can bind short RNA transcripts and use them as guides for sequence-specific cleavage. Target cleavage occurred at a constant distance from the Rnt1p binding site, leaving the guide RNA intact for subsequent cleavage. Our results indicate that RNase III may trigger sequence-specific RNA degradation independent of the RNAi machinery, and they open the road for a new generation of precise RNA silencing tools that do not trigger a dsRNA-mediated immune response
    corecore