431 research outputs found

    Path-decomposition expansion and edge effects in a confined magnetized free-electron gas

    Full text link
    Path-integral methods can be used to derive a `path-decomposition expansion' for the temperature Green function of a magnetized free-electron gas confined by a hard wall. With the help of this expansion the asymptotic behaviour of the profiles for the excess particle density and the electric current density far from the edge is determined for arbitrary values of the magnetic field strength. The asymptotics are found to depend sensitively on the degree of degeneracy. For a non-degenerate electron gas the asymptotic profiles are essentially Gaussian (albeit modulated by a Bessel function), on a length scale that is a function of the magnetic field strength and the temperature. For a completely degenerate electron gas the asymptotic behaviour is again proportional to a Gaussian, with a scale that is the magnetic length in this case. The prefactors are polynomial and logarithmic functions of the distance from the wall, that depend on the number of filled Landau levels nn. As a consequence, the Gaussian asymptotic decay sets in at distances that are large compared to the magnetic length multiplied by n\sqrt{n}.Comment: 16 pages, 2 figures, submitted to J. Phys. A: Math. Gen; corrected small typ

    Time correlations in a confined magnetized free-electron gas

    Full text link
    The time-dependent pair correlation functions for a degenerate ideal quantum gas of charged particles in a uniform magnetic field are studied on the basis of equilibrium statistics. In particular, the influence of a flat hard wall on the correlations is investigated, both for a perpendicular and a parallel orientation of the wall with respect to the field. The coherent and incoherent parts of the time-dependent structure function in position space are determined from an expansion in terms of the eigenfunctions of the one-particle Hamiltonian. For the bulk of the system, the intermediate scattering function and the dynamical structure factor are derived by taking successive Fourier transforms. In the vicinity of the wall the time-dependent coherent structure function is found to decay faster than in the bulk. For coinciding positions near the wall the form of the structure function turns out to be independent of the orientation of the wall. Numerical results are shown to corroborate these findings.Comment: 25 pages, 14 figures, to be published in Journal of Physics

    Classical Coulomb Systems:Screening and Correlations Revisited

    Full text link
    From the laws of macroscopic electrostatics of conductors (in particular the existence of screening) taken for granted, one can deduce universal properties for the thermal fluctuations in a classical Coulomb system at equilibrium. The universality is especially apparent in the long-range correlations of the electrical potentials and fields. The charge fluctuations are derived from the field fluctuations. This is a convenient way for studying the surface charge fluctuations on a conductor with boundaries. Explicit results are given for simple geometries. The potentials and the fields have Gaussian fluctuations, except for a short-distance cutoff.Comment: 17 pages,TE

    Correlations in a confined magnetized free-electron gas

    Full text link
    Equilibrium quantum statistical methods are used to study the pair correlation function for a magnetized free-electron gas in the presence of a hard wall that is parallel to the field. With the help of a path-integral technique and a Green function representation the modifications in the correlation function caused by the wall are determined both for a non-degenerate and for a completely degenerate gas. In the latter case the asymptotic behaviour of the correlation function for large position differences in the direction parallel to the wall and perpendicular to the field, is found to change from Gaussian in the bulk to algebraic near the wall.Comment: 24 pages, 10 figures, submitted to J. Phys. A: Math. Ge

    Multipole interaction between atoms and their photonic environment

    Get PDF
    Macroscopic field quantization is presented for a nondispersive photonic dielectric environment, both in the absence and presence of guest atoms. Starting with a minimal-coupling Lagrangian, a careful look at functional derivatives shows how to obtain Maxwell's equations before and after choosing a suitable gauge. A Hamiltonian is derived with a multipolar interaction between the guest atoms and the electromagnetic field. Canonical variables and fields are determined and in particular the field canonically conjugate to the vector potential is identified by functional differentiation as minus the full displacement field. An important result is that inside the dielectric a dipole couples to a field that is neither the (transverse) electric nor the macroscopic displacement field. The dielectric function is different from the bulk dielectric function at the position of the dipole, so that local-field effects must be taken into account.Comment: 17 pages, to be published in Physical Review

    A semi-synthetic oligosaccharide conjugate vaccine candidate confers protection against Streptococcus pneumoniae serotype 3 infection

    Get PDF
    The identification of immunogenic glycotopes that render glycoconjugate vaccines protective is key to improving vaccine efficacy. Synthetic oligosaccharides are an attractive alternative to the heterogeneous preparations of purified polysaccharides that most marketed glycoconjugate vaccines are based on. To investigate the potency of semi-synthetic glycoconjugates, we chose the least-efficient serotype in the current pneumococcal conjugate vaccine Prevnar 13, Streptococcus pneumoniae serotype 3 (ST3). Glycan arrays containing synthetic ST3 repeating unit oligosaccharides were used to screen a human reference serum for antibodies and to define the recognition site of two ST3-specific protective monoclonal antibodies. The glycan array screens identified a tetrasaccharide that was selected for in-depth immunological evaluation. The tetrasaccharide-CRM197 carrier protein conjugate elicited protective immunity as evidenced by opsonophagocytosis assays and protection against pneumonia caused by ST3 in mice. Formulation of the defined protective lead candidate glycotope has to be further evaluated to elicit optimal long-term immunity

    Bilateral linear scleroderma "en coup de sabre" associated with facial atrophy and neurological complications

    Get PDF
    BACKGROUND: Linear scleroderma "en coup de sabre" (LSCS) usually affects one side of the face and head in the frontoparietal area with band-like indurated skin lesions. The disease may be associated with facial hemiatrophy. Various ophthalmological and neurological abnormalities have been observed in patients with LSCS. We describe an unusual case of LSC. CASE PRESENTATION: A 23 year old woman presented bilateral LSCS and facial atrophy. The patient had epileptic seizures as well as oculomotor and facial nerve palsy on the left side which also had pronounced skin involvement. Clinical features of different stages of the disease are presented. CONCLUSIONS: The findings of the presented patient with bilateral LSCS and facial atrophy provide further evidence for a neurological etiology of the disease and may also indicate that classic progressive facial hemiatrophy (Parry-Romberg syndrome) and LSCS actually represent different spectra of the same disease

    Rationale and design of EXPLORE: a randomized, prospective, multicenter trial investigating the impact of recanalization of a chronic total occlusion on left ventricular function in patients after primary percutaneous coronary intervention for acute ST-elevation myocardial infarction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the setting of primary percutaneous coronary intervention, patients with a chronic total occlusion in a non-infarct related artery were recently identified as a high-risk subgroup. It is unclear whether ST-elevation myocardial infarction patients with a chronic total occlusion in a non-infarct related artery should undergo additional percutaneous coronary intervention of the chronic total occlusion on top of optimal medical therapy shortly after primary percutaneous coronary intervention. Possible beneficial effects include reduction in adverse left ventricular remodeling and preservation of global left ventricular function and improved clinical outcome during future coronary events.</p> <p>Methods/Design</p> <p>The Evaluating Xience V and left ventricular function in Percutaneous coronary intervention on occLusiOns afteR ST-Elevation myocardial infarction (EXPLORE) trial is a randomized, prospective, multicenter, two-arm trial with blinded evaluation of endpoints. Three hundred patients after primary percutaneous coronary intervention for ST-elevation myocardial infarction with a chronic total occlusion in a non-infarct related artery are randomized to either elective percutaneous coronary intervention of the chronic total occlusion within seven days or standard medical treatment. When assigned to the invasive arm, an everolimus-eluting coronary stent is used. Primary endpoints are left ventricular ejection fraction and left ventricular end-diastolic volume assessed by cardiac Magnetic Resonance Imaging at four months. Clinical follow-up will continue until five years.</p> <p>Discussion</p> <p>The ongoing EXPLORE trial is the first randomized clinical trial powered to investigate whether recanalization of a chronic total occlusion in a non-infarct related artery after primary percutaneous coronary intervention for ST-elevation myocardial infarction results in a better preserved residual left ventricular ejection fraction, reduced end-diastolic volume and enhanced clinical outcome.</p> <p>Trial registration</p> <p>trialregister.nl NTR1108.</p
    • …
    corecore