108 research outputs found
Theoretical studies of Resonance Enhance Stimulated Raman Scattering (RESRS) of frequency doubled Alexandrite laser wavelengths in cesium vapor
It is well known that the presence of a real atomic level which is nearly resonant with the pump field can greatly enhance the Raman emission cross section. In order to accurately calculate the Raman gain in systems where resonance enhancement plays a dominant role, expressions for the pump and signal susceptibilities must be derived. These expressions should be valid for arbitrary field strengths in order to allow for pump and signal saturation. In addition, the theory should allow for arbitrary longitudinal and transverse relaxation rates. This latter point is extremely vital for three level atomic systems such as the alkali earth metals since they do not have population reservoirs and can have widely varying spontaneous lifetimes on the three pertinent transitions. Moreover, the dephasing rates are strong functions of electron states and are therefore also different for the three coupled pairs of levels. These considerations are not as important when molecular systems are concerned since the large reservoir of rotational states serve to produce essentially equal longitudinal recovery rates for the population of the three levels. The three level system with three arbitrary longitudinal and transverse relaxation rates was solved. There is no need for setting either pair of rates equal and the expressions are valid for arbitrarily strong fields
Approximate analytic solutions for the optical pumping of fluorescent dyes
A general technique for solving a system of rate equations describing the interaction of an electromagnetic field and a molecular system is presented. The method is used to obtain approximate time-dependent solutions for the upper-level population of fluorescent dyes in the presence of a pump field
Anomalous dispersion and the pumping of far infrared (FIR) lasers
It is shown that the anomalous dispersion at the pump transition in molecular far-infrared lasers (FIR) can lead to sizable focusing and defocusing effects. Criteria for beam spreading and trapping are considered with CH2F as an example
Temperature dependence of optically dumped far-infrared (FIR) laser output power
The temperature dependence of the small signal gain and saturation power are derived using temperature-dependent rates in a four-level model. An expression is developed for the output power of a far-infrared oscillator as a function of temperature for both fixed pressure and fixed density. The results are valid in the regime of homogeneous broadening of the rotational transition and Doppler broadening of the pump transition. It is shown that, for most lasers, both the small signal gain and the saturation power decrease with increasing temperature. These effects have the overall result of increasing output power with decreasing temperatures
Photon reflection at the boundary of an inverted medium
The index change near a quantum transition is shown to cause significant feedback into a gain medium. Criteria are given for the onset of self-lasing in an extended material. The distortion of a reflected pulse is also considered
Fluctuations of radiation from a chaotic laser below threshold
Radiation from a chaotic cavity filled with gain medium is considered. A set
of coupled equations describing the photon density and the population of gain
medium is proposed and solved. The spectral distribution and fluctuations of
the radiation are found. The full noise is a result of a competition between
positive correlations of photons with equal frequencies (due to stimulated
emission and chaotic scattering) which increase fluctuations, and a suppression
due to interaction with a gain medium which leads to negative correlations
between photons. The latter effect is responsible for a pronounced suppression
of the photonic noise as compared to the linear theory predictions.Comment: 7 pages, 5 figures; expanded version, to appear in Phys. Rev.
A study of random laser modes in disordered photonic crystals
We studied lasing modes in a disordered photonic crystal. The scaling of the
lasing threshold with the system size depends on the strength of disorder. For
sufficiently large size, the minimum of the lasing threshold occurs at some
finite value of disorder strength. The highest random cavity quality factor was
comparable to that of an intentionally introduced single defect. At the
minimum, the lasing threshold showed a super-exponential decrease with the size
of the system. We explain it through a migration of the lasing mode frequencies
toward the photonic bandgap center, where the localization length takes the
minimum value. Random lasers with exponentially low thresholds are predicted.Comment: 4 pages, 4 figure
A Phase transition in acoustic propagation in 2D random liquid media
Acoustic wave propagation in liquid media containing many parallel air-filled
cylinders is considered. A self-consistent method is used to compute rigorously
the propagation, incorporating all orders of multiple scattering. It is shown
that under proper conditions, multiple scattering leads to a peculiar phase
transition in acoustic propagation. When the phase transition occurs, a
collective behavior of the cylinders appears and the acoustic waves are
confined in a region of space in the neighborhood of the transmission source. A
novel phase diagram is used to describe such phase transition.
Originally submitted on April 6, 99.Comment: 5 pages, 5 color figure
Study of transmission and reflection from a disordered lasing medium
A numerical study of the statistics of transmission () and reflection
() of quasi-particles from a one-dimensional disordered lasing or amplifying
medium is presented. The amplification is introduced via a uniform imaginary
part in the site energies in the disordered segment of the single-band tight
binding model. It is shown that is a non-self-averaging quantity. The
cross-over length scale above which the amplification suppresses the
transmittance is studied as a function of amplification strength. A new
cross-over length scale is introduced in the regime of strong disorder and weak
amplification. The stationary distribution of the backscattered reflection
coefficient is shown to differ qualitatively from the earlier analytical
results obtained within the random phase approximation.Comment: 5 pages RevTex (twocolumn format), 5 EPS figures, considerably
modifie
Correlations in Transmission of Light through a Disordered Amplifying Medium
The angular and frequency correlation functions of the transmission
coefficient for light propagation through a strongly scattering amplifying
medium are considered. It is found that just as in the case of an elastic
scattering medium the correlation function consists of three terms. However,
the structure of the terms is rather different. Angular correlation has a
power-law decay and exhibits oscillations. There is no "memory effect" as in
the case of an elastic medium. Interaction between diffusion modes is strongly
enhanced near the lasing threshold. Frequency correlation scale decreases close
to the lasing threshold.
We also consider time correlations of the transmission in the case of
nonstationary inhomogeneities. We find short- and long-range time correlations.
The scale of the short-range correlation decreases, while the long-range
correlation scale becomes infinite near the threshold.Comment: 16 pages, 7 postscript figure
- …