16,016 research outputs found
Recommended from our members
Evolution of mixing state of black carbon in polluted air from Tokyo
The evolution of the mixing state of black carbon aerosol (BC) was investigated using a single-particle soot photometer (SP2) in polluted air transported from Tokyo. Ground-based measurements of aerosols and trace gases were conducted at a suburban site (Kisai) 50 km north of Tokyo during July-August 2004. The ratio of 2-pentyl nitrate (2-PeONO2) to n-pentane (n-C5H12) was used to derive the photochemical age. According to the SP2 measurement, the number fraction of thickly coated BC (Shell/Corel Ratio > ca. 2) with a core diameter of 180 nm increased at the rate of 1.9% h-1, as the photochemical clock proceeded under land-sea breeze circulation. Positive matrix factorization was applied to investigate the time-dependent contributions of different coating materials using the mass concentrations of sulfate, nitrate, and organics measured using an aerosol mass spectrometer. The main coating materials found in this study were sulfate and organics. Copyright 2007 by the American Geophysical Union
Prediction of the capacitance lineshape in two-channel quantum dots
We propose a set-up to realize two-channel Kondo physics using quantum dots.
We discuss how the charge fluctuations on a small dot can be accessed by using
a system of two single electron transistors arranged in parallel. We derive a
microscopic Hamiltonian description of the set-up that allows us to make
connection with the two-channel Anderson model (of extended use in the context
of heavy-Fermion systems) and in turn make detailed predictions for the
differential capacitance of the dot. We find that its lineshape, which we
determined precisely, shows a robust behavior that should be experimentally
verifiable.Comment: 4 pages, 3 figure
Hadronic Weak Decays of Hyperons in a Soliton Model
We study the parity violating hyperon non-leptonic weak decays in the three
flavor Skyrme model. We follow the approach in which the symmetry breaking
terms in the action are diagonalized exactly within the collective coordinate
approximation. We show that although this method introduces some configuration
mixing, the rule is numerically well satisfied. In addition,
and in contrast to previous calculations, we show that not only the relative
amplitudes are in good agreement with the empirical values but also their
absolute values. The issue of whether the strong interaction enhancement
factors should be included in soliton calculations is also addressed.Comment: 8 pages, LaTeX, no figure
Electric Conductivity of the Zero-gap Semiconducting State in Alpha-(BEDT-TTF)2I3 Salt
The electric conductivity which reveals the zero gap semiconducting (ZGS)
state has been investigated as the function of temperature and life time
in order to understand the ZGS state in quarter-filled
-(BEDT-TTF)I salt with four sites in the unit cell. By treating
as a parameter and making use of the one-loop approximation, it is found
that the conductivity is proportional to and for
and independent of and for . Further the
conductivity being independent of in the ZGS state is examined in terms of
Born approximation for the impurity cattering.Comment: 5 pages, 4 figures, submitted to J. Phys. Soc. Jp
Experimental Studies on the Dynamic Behavior of Soft Clay Ground-Structures Supported by Friction Pile Foundations
Recently, structures are often sited on a soft ground. So, a friction pile and a floating foundation are considered a possible and promising one. The object of this paper is to study the dynamic behavior of soft clay ground-structure supported by friction pile foundation on the basis of the shaking table test. Major results are as follows; 1) the residual settlement of structure resulting from decreasing the bearing capacity of the ground, wh1ch 1s caused by the accumulation of the excess pore water pressure, is larger than that of ground without structures. 2) The initial shear stress is a main contributor of the grounds of the generating of the excess pore water pressure in the ground between piles
Recommended from our members
Radiative impact of mixing state of black carbon aerosol in Asian outflow
The radiative impact of the mixing state of black carbon (BC) aerosol is investigated in Asian outflow. The mixing state and size distribution of BC aerosol were measured with a ground-based single-particle soot photometer at a remote island (Fukue) in Japan in spring 2007. The mass concentration of BC in Asian continental air masses reached 0.5 μg m-3, with a mass median diameter of 200-220 nm. The median value of the shell/core diameter ratio increased to ∼1.6 in Asian continental and maritime air masses with a core diameter of 200 mn, while in free tropospheric and Japanese air masses it was 1.3-1.4. On the basis of theoretical calculations using the size distribution and mixing state of BC aerosol, scattering and absorption properties of PM1 aerosols were calculated under both dry and ambient conditions, considering the hygroscopic growth of aerosols. It was estimated that internal mixing enhanced the BC absorption by a factor of 1.5-1.6 compared to external mixing. The calculated absorption coefficient was 2-3 times higher in Asian continental air masses than in clean air. Coatings reduced the single-scattering albedo (SSA) of PM1 aerosol by 0.01 -0.02, which indicates the importance of the mixing state of BC aerosol in evaluating its radiative influence. The SSA was sensitive to changes in air mass type, with a value of ∼0.98 in Asian continental air masses and ∼0.95 in Japanese and free tropospheric air masses under ambient conditions. Copyright 2008 by the American Geophysical Union
Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes.
The nucleus of oocytes (germinal vesicle) is unusually large and its nuclear envelope (NE) is densely packed with nuclear pore complexes (NPCs) stockpiled for embryonic development. We showed that breakdown of this specialized NE is mediated by an Arp2/3-nucleated F-actin 'shell' in starfish oocytes, in contrast to microtubule-driven tearing in mammalian fibroblasts. Here, we address the mechanism of F-actin-driven NE rupture by correlated live-cell, super-resolution and electron microscopy. We show that actin is nucleated within the lamina sprouting filopodia-like spikes towards the nuclear membranes. These F-actin spikes protrude pore-free nuclear membranes, whereas the adjoining membrane stretches accumulate NPCs associated with the still-intact lamina. Packed NPCs sort into a distinct membrane network, while breaks appear in ER-like, pore-free regions. Thereby, we reveal a new function for actin-mediated membrane shaping in nuclear rupture that is likely to have implications in other contexts such as nuclear rupture observed in cancer cells
Recommended from our members
Evolution of mixing state of black carbon particles: Aircraft measurements over the western Pacific in March 2004
We report the evolution of the mixing state of black carbon (BC) particles in urban plumes measured by an airborne single particle soot photometer. The aircraft observations were conducted over the ocean near the coast of Japan in March 2004. The number fiaction of coated BC particles with a core diameter of 180 mn increased from 0.35 to 0.63 within 12 hours (h), namely 2.3% h-1, after being emitted from the Nagoya urban area in Japan. BC particles with a core diameter of 250 nm increased at the slower rate of 1.0% h-1. The increase in coated BC particles was associated with increases in non-sea salt sulfate and water-soluble organic carbon by a factor of approximately two, indicating that these compounds contributed to the coating on the BC particles. These results give direct evidence that BC particles become internally mixed on a time scale of 12 h in urban plumes. Copyright 2007 by the American Geophysical Union
- …