40 research outputs found

    Multisource noninvasive genetics of brown bears (Ursus arctos) in Greece reveals a highly structured population and a new matrilineal contact zone in southern Europe

    Get PDF
    In human‐dominated landscapes, connectivity is crucial for maintaining demographically stable mammalian populations. Here, we provide a comprehensive noninvasive genetic study for the brown bear population in the Hellenic Peninsula. We analyze its population structuring and connectivity, estimate its population size throughout its distribution, and describe its phylogeography in detail for the first time. Our results, based on 150 multilocus genotypes and on 244‐bp sequences of the mtDNA control region, show the population is comprised by three highly differentiated genetic clusters, consistent with geographical populations of Pindos, Peristeri, and Rhodope. By detecting two male bears with Rhodopean ancestry in the western demes, we provide strong evidence for the ongoing genetic connectivity of the geographically fragmented eastern and western distributions, which suggests connectivity of the larger East Balkan and Pindos‐Dinara populations. Total effective population size (Ne) was estimated to be 199 individuals, and total combined population size (NC) was 499, with each cluster showing a relatively high level of genetic variability, suggesting that migration has been sufficient to counteract genetic erosion. The mtNDA results were congruent with the microsatellite data, and the three genetic clusters were matched predominantly with an equal number of mtDNA haplotypes that belong to the brown bear Western mitochondrial lineage (Clade 1), with two haplotypes being globally new and endemic. The detection of a fourth haplotype that belongs to the Eastern lineage (Clade 3a1) in three bears from the western distribution places the southernmost secondary contact zone between the Eastern and Western lineages in Greece and generates new hypotheses about postglacial maxima migration routes. This work indicates that the genetic composition and diversity of Europe's low‐latitude fringe population are the outcome of ancient and historical events and highlight its importance for the connectivity and long‐term persistence of the species in the Balkans

    Effect of two UV-absorbing greenhouse-covering films on growth and yield of an eggplant soilless crop

    No full text
    The use of UV absorbing films as greenhouse cover material is spreading out in protected cultivation. Although their effects on pest and disease management have received much attention, few studies focus on their effects on the crop. This study aims at assessing the consequences of UV absorbing film on the behaviour and production of an eggplant crop by comparing two different UV absorbing films (0 and 3% UV transmittance) to a standard polyethylene film (5% UV transmittance). Results show that the eggplants grown in the greenhouse with 0% transmission to UV light are about 21% taller and have about 17% higher leaf product (leaf length x width) than the plants grown in the greenhouse with 5% transmission to UV light. Finally, given that the production was slightly increased in quantity (20%) and quality (bigger fruits) in the greenhouse with absence of UV light compared to that with 5% transmission coefficient, it can be concluded that growing soilless eggplant under UV-absorbing material can be achieved with the same or better results as under standard covering material. Any other enhancement that the UV-absorbing film will bring (lower pest and disease impact on the crop, lower pesticide load and costs) will therefore be to the benefit of the grower. (c) 2006 Elsevier B.V. All rights reserved

    Sesame meal, vitamin e and selenium influence goats’ antioxidant status

    No full text
    This study aimed to determine the impact of sesame meal, selenium (Se), and vitamin E (VitE) on goats’ oxidative status. Thirty mid-lactation crossbred goats were divided into five homogeneous groups, and were fed 1 kg of alfalfa hay and 1.2 kg of concentrates daily. The control group (C) received a basal diet. In the concentrates of the treated groups, 10% of the soybean meal was replaced by sesame meal and no extra VitE or Se (SM), or an extra 60 mg of VitE (SME), or 0.1 mg organic Se (SMSe), or their combination (60 mg VitE and 0,1 mg organic Se/kg of concentrate (SMESe). In the plasma of the goats, the dietary treatments did not affect glutathione reductase, glutathione peroxidase, glutathione transferase, catalase, superoxide dismutase activities, malondialdehyde (MDA) content, or the total antioxidant capacity. A reduction and a trend for lower protein carbonyls content was found in goats fed SM (p = 0.03) and SME (p = 0.06) compared to SMESe. In the milk, the lactoperoxidase activity decreased with SMSe and SMESe. A numerical decrease in the total antioxidant capacity and an increase in the MDA content in the milk of the SMESe group compared with the other treated groups was found. In mid-lactation goats, SM improves the oxidative status of both the organism and the milk

    PCR-SSCP of the 16S rRNA gene, a simple methodology for species identification of fish eggs and larvae

    Get PDF
    Patterns of the 16S rRNA gene obtained in 8 and 12% acrylamide gels by the SSCP (Single Strand Conformation Polymorphism) method were different for various marine fish species (Macrorhamphosus scolopax, Scomber scombrus, Lepidorhombus boscii, L. whiffiagonis, Trachurus trachurus, T. mediterraneus, Molva molva, Merluccius merluccius). SSCP patterns of this gene were employed to successfully identify formaldehyde-fixed eggs of different species (Merluccius merluccius, Scomber scombrus, Macrorhamphosus scolopax and L. whiffiagonis) in plankton samples. The advantages of SSCPs in comparison with current genetic methods of egg identification are based on their technical simplicity and low price. The application of the PCR-SSCP methodology is proposed for routine genetic analyses in plankton surveys

    The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs

    No full text
    During the meiotic cell cycle in Xenopus oocytes, p90(rsk), the downstream kinase of the Mos–MAPK pathway, interacts with and inhibits the Cdc2 inhibitory kinase Myt1. However, p90(rsk) is inactivated after fertilization due to the degradation of Mos. Here we show that the Polo-like kinase Plx1, instead of p90(rsk), interacts with and inhibits Myt1 after fertilization of Xenopus eggs. At the M phase of the embryonic cell cycle, Cdc2 phosphorylates Myt1 on Thr478 and thereby creates a docking site for Plx1. Plx1 can phosphorylate Myt1 and inhibit its kinase activity both in vitro and in vivo. The interaction between Myt1 and Plx1 is required, at least in part, for normal embryonic cell divisions. Finally, and interestingly, Myt1 is phosphorylated on Thr478 even during the meiotic cell cycle, but its interaction with Plx1 is largely inhibited by p90(rsk)-mediated phosphorylation. These results indicate a switchover in the Myt1 inhibition mechanism at fertilization of Xenopus eggs, and strongly suggest that Plx1 acts as a direct inhibitory kinase of Myt1 in the mitotic cell cycles in Xenopus
    corecore