1,740 research outputs found

    Multifarious trajectories in plant-based ethnoveterinary knowledge in northern and southern Eastern Europe

    Get PDF
    Over the last century in the European context, animal production has been transformed by the dynamics of centralization and decentralization due to political and economic factors. These processes have influenced knowledge related to healing and ensuring the welfare of domestic animals. Therefore, our study aimed to document and compare current and past ethnoveterinary practices, and to identify trajectories in ethnoveterinary knowledge in study regions from both northern and southern Eastern Europe. In the summers of 2018 and 2019, we conducted 476 interviews, recording the use of 94 plant taxa, 67 of which were wild and 24 were cultivated. We documented 452 use reports, 24 of which were related to the improvement of the quality or quantity of meat and milk, while the other 428 involved ethnoveterinary practices for treating 10 domestic animal taxa. Cattle were the most mentioned target of ethnoveterinary treatments across all the study areas, representing about 70% of all use reports. Only four plant species were reported in five or more countries (Artemisia absinthium, Hypericum spp., Linum usitatissimum, Quercus robur). The four study regions located in Northern and Southern Eastern Europe did not present similar ethnoveterinary knowledge trajectories. Bukovinian mountain areas appeared to hold a living reservoir of ethnoveterinary knowledge, unlike the other regions. Setomaa (especially Estonian Setomaa) and Dzukija showed an erosion of ethnoveterinary knowledge with many uses reported in the past but no longer in use. The current richness of ethnoveterinary knowledge reported in Bukovina could have been developed and maintained through its peculiar geographical location in the Carpathian Mountains and fostered by the intrinsic relationship between the mountains and local pastoralists and by its unbroken continuity of management even during the Soviet era. Finally, our results show some patterns common to several countries and to the veterinary medicine promoted during the time of the Soviet Union. However, the Soviet Union and its centralized animal breeding system, resulted in a decline of ethnoveterinary knowledge as highly specialized veterinary doctors worked in almost every village. Future research should examine the complex networks of sources from where farmers derive their ethnoveterinary knowledge

    Π‘Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ – основа Π²Ρ‹Π±ΠΎΡ€Π° ингаляционных Π³Π»ΡŽΠΊΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠΎΡΡ‚Π΅Ρ€ΠΎΠΈΠ΄ΠΎΠ² Π² Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмы Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ

    Get PDF
    Safety and efficacy as fundamental choice of inhaled steroids for treatment of childhood asthma.Π‘Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ – основа Π²Ρ‹Π±ΠΎΡ€Π° ингаляционных Π³Π»ΡŽΠΊΠΎΠΊΠΎΡ€Ρ‚ΠΈΠΊΠΎΡΡ‚Π΅Ρ€ΠΎΠΈΠ΄ΠΎΠ² Π² Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмы Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ

    Changes in the transcriptome of the prefrontal cortex of OXYS rats as the signs of Alzheimer’s disease development

    Get PDF
    Alzheimer’s disease (AD) is the most prevalent neuroΒ­degenerative disease. It produces atrophic changes in the brain, which cause dementia. The incidence of AD is increasing with increasing life expectancy and gradual aging of theΒ population in developed countries. There are no effective prophylactic interΒ­ventions because of insufficient understanding of the AD pathogenesis and the absence of adequate experimental models. Recently, we showed that senescence-accelerated OXYS rats represent aΒ promisΒ­ing model of AD; in these rats, accelerated aging of the brain is accompanied by the typical signs of AD: degenerative alterations and death of neurons, a deΒ­crease in synaptic density, mitochondrial dysfunction, hyperphosphorylation of the tau protein, an increased level of amyloid Ξ² (AΞ²1–42), and the formation of amyloid plaques. To elucidate how these signs develop, we used a nextgeneration RNA sequencing technique (RNA-Seq) to study theΒ prefronΒ­tal-cortex transcriptome ofΒ OXYS rats during the manifestation of AD signs (at an age of 5 months) and during their active progresΒ­sion (at an age of 18Β months), using age-matched Wistar rats (parental strain) as controls. At the age of 5 months, there were significant differences between OXYS and Wistar rats (p < 0.01) in the mRNA expression of more than 900 genes (> 2000 genes at the age of 18Β months) in the prefrontal cortex. Most of these genes were related to neuronal plasticity, protein phosphorylation, Π‘Π°2+ homeostasis, hypoxia, immune processes, and apoptosis. Between the ages of 5 and 18Β months, there were changes in the expression of 499 genes in Wistar rats and changes in the expresΒ­sion of 5500 genes in OXYS rats. Only 333 genes were common between these sets. This finding points to differences in the mechanisms and rates of age-related changes in the brain between normal aging and theΒ period of development of AD-specific neuroΒ­degeneΒ­rative processes

    НСбулайзСрная тСрапия Π² пСдиатричСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅

    Get PDF
    Inhalation therapy is a modern and preferable method of drug delivery which is currently used for treatment of majority of acute and chronic respiratory diseases in children and adults. Recently, inhalation devices have evolved significantly. Scientific researches are focused on interaction between drug molecules and aerosol-producing device. The efficacy of inhalation therapy is generally depends on the drug, its dose and technical parameters of the device. Inhalation devices that are able effectively produce drug aerosol have been used for treatment of most pediatric diseases. Advantages of this therapy are quick onset of the action, the possibility to reduce a drug dose due to higher drug concentration in the airways and to decrease the risk of adverse events, and independence of the liver metabolism. Nebulized therapy has been currently used for therapy of the majority of pediatric respiratory diseases. Drug formulation diversity and ability to combine > 2 drugs could enhance the treatment efficacy.ΠŸΡ€Π΅Π΄ΠΏΠΎΡ‡Ρ‚ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ доставки лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ² Π² настоящСС врСмя являСтся ингаляционная тСрапия, примСняСмая Π² Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π΅ случаСв Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ острых, Π½ΠΎ ΠΈ хроничСских Ρ€Π΅Ρ†ΠΈΠ΄ΠΈΠ²ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ рСспираторного Ρ‚Ρ€Π°ΠΊΡ‚Π° Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ ΠΈ взрослых. Π—Π° послСдниС нСсколько Π»Π΅Ρ‚ ингаляционныС систСмы ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠ΅. НаучныС исслСдования ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€ΠΈΡ€ΡƒΡŽΡ‚ΡΡ Π½Π° взаимодСйствии ΠΌΠΎΠ»Π΅ΠΊΡƒΠ»Ρ‹ лСкарствСнного вСщСства ΠΈ ΠΏΡ€ΠΈΠ±ΠΎΡ€Π°, Π³Π΅Π½Π΅Ρ€ΠΈΡ€ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΈ Π΄ΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‰Π΅Π³ΠΎ Π°ΡΡ€ΠΎΠ·ΠΎΠ»ΡŒ. Π­Ρ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ингаляционной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΎΠΌ зависит Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚ лСкарствСнного ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°, Π΅Π³ΠΎ Π΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰Π΅Π³ΠΎ вСщСства, Π½Π°Π·Π½Π°Ρ‡Π΅Π½Π½ΠΎΠΉ Π΄ΠΎΠ·Ρ‹, Π½ΠΎ ΠΈ ΠΎΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ингаляционного устройства. Π’ ΠΏΠ΅Π΄ΠΈΠ°Ρ‚Ρ€ΠΈΠΈ для лСчСния Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ингаляционныС устройства, ΠΏΠΎΠ·Π²ΠΎΠ»ΡΡŽΡ‰ΠΈΠ΅ качСствСнно ΠΏΡ€ΠΎΠ΄ΡƒΡ†ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ ΠΈ Ρ€Π°ΡΠΏΡ‹Π»ΡΡ‚ΡŒ лСкарствСнный раствор. ΠŸΡ€Π΅ΠΈΠΌΡƒΡ‰Π΅ΡΡ‚Π²Π° Ρ‚Π°ΠΊΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ связаны с быстрым Π½Π°Ρ‡Π°Π»ΠΎΠΌ дСйствия лСкарствСнного вСщСства, Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΡ Π΄ΠΎΠ·Ρ‹ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π·Π° счСт создания высокой ΠΊΠΎΠ½Ρ†Π΅Π½Ρ‚Ρ€Π°Ρ†ΠΈΠΈ нСпосрСдствСнно Π² Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… путях, сниТСния риска систСмных ΠΏΠΎΠ±ΠΎΡ‡Π½Ρ‹Ρ… эффСктов, отсутствия зависимости ΠΎΡ‚ активности ΠΏΠ΅Ρ‡Π΅Π½ΠΎΡ‡Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π±ΠΎΠ»ΠΈΠ·ΠΌΠ°. БСгодня Π² пСдиатричСской ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅ нСбулайзСрная тСрапия примСняСтся для лСчСния Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° рСспираторных Π·Π°Π±ΠΎΠ»Π΅Π²Π°Π½ΠΈΠΉ, Π° ΠΌΠ½ΠΎΠ³ΠΎΠΎΠ±Ρ€Π°Π·ΠΈΠ΅ лСкарствСнных Ρ„ΠΎΡ€ΠΌ (ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΠΎΠ²Π°Π½Ρ‹ всС стандартныС растворы для ингаляций) ΠΈ ΠΈΡ… ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΉ (Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡ‚ΡŒ ΠΎΠ΄Π½ΠΎΠ²Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ примСнСния β‰₯ 2 лСкарствСнных ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚ΠΎΠ²) ΡΠΏΠΎΡΠΎΠ±ΡΡ‚Π²ΡƒΡŽΡ‚ эффСктивности Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ

    Influence of Antioxidant SkQ1 on Accumulation of Mitochondrial DNA Deletions in the Hippocampus of Senescence-Accelerated OXYS Rats

    Get PDF
    Human and animal aging is associated with gradual decline of cognitive functions (especially learning ability and memory) and increased risk of development of neurodegenerative diseases 596 Abbreviations: bp, base pairs; mtDNA, mitochondrial DNA; βˆ†mtDNA, deletion in mitochondrial DNA; βˆ†mtDNA 4834 , 4834-bp mitochondrial DNA deletion; ROS, reactive oxygen species; SkQ1, antioxidant 10-(6β€²-plastoquinonyl)decyltriphenylphosphonium. * To whom correspondence should be addressed. Abstract-Reduction of efficiency of oxidative phosphorylation associated with aging and the development of neurodegenerative diseases including Alzheimer's disease is thought to be linked to the accumulation of deletions in mitochondrial DNA (βˆ†mtDNA), which are seen as a marker of oxidative damage. Recently, we have shown that mitochondria-targeted antioxidant SkQ1 (10-(6β€²-plastoquinonyl)decyltriphenylphosphonium) can slow the development of signs of Alzheimer's disease in senescence-accelerated OXYS rats. The purpose of this study was to explore the relationship between the development of neurodegenerative changes in the brain of OXYS rats and changes in the amount of mtDNA and the 4834-bp mitochondrial DNA deletion (βˆ†mtDNA 4834 ) as well as the effect of SkQ1. We studied the relative amount of mtDNA and βˆ†mtDNA 4834 in the hippocampus of OXYS and Wistar (control) rats at ages of 1, 2, 6, 10, and 20 days and 3, 6, and 24 months. During the period crucial for manifestation of the signs of accelerated aging of OXYS rats (from 1.5 to 3 months of age), we evaluated the effects of administration of SkQ1 (250 nmol/kg) and vitamin E (670 mmol/kg, reference treatment) on the amount of mtDNA and βˆ†mtDNA 4834 and on the formation of the behavioral feature of accelerated senescence in OXYS rats -passive type of behavior in the open field test. In OXYS rats, the level of βˆ†mtDNA 4834 in the hippocampus is increased compared to the Wistar rats, especially at the stage of completion of brain development in the postnatal period. This level remains elevated not only at the stages preceding the manifestation of the signs of accelerated brain aging and the development of pathological changes linked to Alzheimer's disease, but also during their progression. However, at age of 24 months, there were no detectable differences between the two strains. SkQ1 treatment reduced the level of βˆ†mtDNA 4834 in the hippocampus of Wistar and OXYS rats and slowed the formation of passive behavior in OXYS rats. These results support the possible use of SkQ1 for prophylaxis of brain aging. Influence of Antioxidant SkQ1 o

    The Mitochondria-Targeted Antioxidant SkQ1 Downregulates Aryl Hydrocarbon Receptor-Dependent Genes in the Retina of OXYS Rats with AMD-Like Retinopathy

    Get PDF
    The mitochondria-targeted antioxidant SkQ1 is a novel drug thought to retard development of age-related diseases. It has been shown that SkQ1 reduces clinical signs of retinopathy in senescence-accelerated OXYS rats, which are a known animal model of human age-related macular degeneration (AMD). The aim of this work was to test whether SkQ1 affects transcriptional activity of AhR (aryl hydrocarbon receptor) and Nrf2 (nuclear factor erythroid 2-related factor 2), which are considered as AMD-associated genes in the retina of OXYS and Wistar rats. Our results showed that only AhR and AhR-dependent genes were sensitive to SkQ1. Dietary supplementation with SkQ1 decreased the AhR mRNA level in both OXYS and Wistar rats. At baseline, the retinal Cyp1a1 mRNA level was lower in OXYS rats. SkQ1 supplementation decreased the Cyp1a1 mRNA level in Wistar rats, but this level remained unchanged in OXYS rats. Baseline Cyp1a2 and Cyp1b1 mRNA expression was stronger in OXYS than in Wistar rats. In the OXYS strain, Cyp1a2 and Cyp1b1 mRNA levels decreased as a result of SkQ1 supplementation. These data suggest that the Cyp1a2 and Cyp1b1 enzymes are involved in the pathogenesis of AMD-like retinopathy of OXYS rats and are possible therapeutic targets of SkQ1

    ΠžΠΏΡ‹Ρ‚ ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ использования бСсфрСонового ΡƒΠ»ΡŒΡ‚Ρ€Π°ΠΌΠ΅Π»ΠΊΠΎΠ΄ΠΈΡΠΏΠ΅Ρ€ΡΠ½ΠΎΠ³ΠΎ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Π±Π΅ΠΊΠ»ΠΎΠΌΠ΅Ρ‚Π°Π·ΠΎΠ½Π° Π΄ΠΈΠΏΡ€ΠΎΠΏΠΈΠΎΠ½Π°Ρ‚Π° ΠΈ Ρ„ΠΎΡ€ΠΌΠΎΡ‚Π΅Ρ€ΠΎΠ»Π° Π² Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ срСднСтяТСлой Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмы Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ

    Get PDF
    Open non-comparative 3-month study of efficacy of combined therapy with beclomethasone (Beclason ECO Easy Breathe) and formoterol (Foradil) was performed in children 6 to 11 years old with moderate bronchial asthma. The study involved 35 patients (the average age was 8.64 Β± 0.65 yrs), 69 % were boys. The length of the disease was 2 to 10 yrs (6.01 Β± 0.83 yrs). All the patients were given Beclason ECO Easy Breathe 200 meg and Foradil 9 meg twice a day. We evaluated inhalation technique, clinical and functional dynamics, possibilities of achieving the full asthma control, need in short-acting Ξ²1-agonists, tolerability and safety of the therapy. No one patient experienced technique problems when using Beclason ECO Easy Breathe. By the 8-th week of the treatment asthma symptoms disappeared in all the patients, breathing rate and lung auscultation became normal. Significant improvement in lung function was noted by the 12-th week of the therapy. The FEV1 growth under the bronchodilating test diminished indicating more bronchial stability. Peak expiratory flow rate increased even in children with initial normal parameters. The need in short-acting Ξ²2-agonists reduced from 1,9 Β± 0,4 to 0,6 Β± 0,2 doses daily. The treatment was well tolerated.Thus, the combination of Beclason ECO Easy Breathe and Foradil in moderate asthma children results in achieving the full asthma control, clinical stability, elimination of the asthma signs, improvement in lung function.Нами ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ΅ Π½Π΅ΡΡ€Π°Π²Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ исслСдованиС эффСктивности ΠΊΠΎΠΌΠ±ΠΈΠ½ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Π±Π΅ΠΊΠ»ΠΎΠΌΠ΅Ρ‚Π°Π·ΠΎΠ½ΠΎΠΌ (Π‘Π΅ΠΊΠ»Π°Π·ΠΎΠ½ ЭКО "Π›Π΅Π³ΠΊΠΎΠ΅ Π΄Ρ‹Ρ…Π°Π½ΠΈΠ΅") ΠΈ Ρ„ΠΎΡ€ΠΌΠΎΡ‚Π΅Ρ€ΠΎΠ»ΠΎΠΌ (Π€ΠΎΡ€Π°Π΄ΠΈΠ») Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ 6-11 Π»Π΅Ρ‚ с Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ астмой (БА) срСднСй тяТСсти Π² Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ 3 мСс. Π’ исслСдованиС Π±Ρ‹Π»ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π΅Π½Ρ‹ 35 ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² (срСдний возраст 8,64 Β± 0,65 Π»Π΅Ρ‚), 69 % составили ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊΠΈ. Π”Π»ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ заболСвания Π²Π°Ρ€ΡŒΠΈΡ€ΠΎΠ²Π°Π»Π°ΡΡŒ ΠΎΡ‚ 2 Π΄ΠΎ 10 Π»Π΅Ρ‚ (Π² срСднСм β€” 6,01 Β± 0,83 Π³ΠΎΠ΄Π°). ВсСм ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚Π°ΠΌ Π±Ρ‹Π» Π½Π°Π·Π½Π°Ρ‡Π΅Π½ Π‘Π΅ΠΊΠ»Π°Π·ΠΎΠ½ ЭКО "Π›Π΅Π³ΠΊΠΎΠ΅ Π΄Ρ‹Ρ…Π°Π½ΠΈΠ΅" 200 ΠΌΠΊΠ³ Π΄Π²Π°ΠΆΠ΄Ρ‹ Π² дСнь Π² ΠΊΠΎΠΌΠ±ΠΈΠ½Π°Ρ†ΠΈΠΈ с Π€ΠΎΡ€Π°Π΄ΠΈΠ»ΠΎΠΌ 9 ΠΌΠΊΠ³ Π΄Π²Π°ΠΆΠ΄Ρ‹ Π² дСнь. На Ρ„ΠΎΠ½Π΅ этой Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ ΠΊΠ°ΠΆΠ΄Ρ‹Π΅ 3 мСс. ΠΌΡ‹ ΠΎΡ†Π΅Π½ΠΈΠ²Π°Π»ΠΈ Ρ‚Π΅Ρ…Π½ΠΈΠΊΡƒ использования ингалятора "Π›Π΅Π³ΠΊΠΎΠ΅ Π΄Ρ‹Ρ…Π°Π½ΠΈΠ΅" ΠΈ АэролайзСра; Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΡƒ клиничСского ΠΈ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΎΠ½Π°Π»ΡŒΠ½ΠΎΠ³ΠΎ статуса, возмоТности достиТСния ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ контроля; ΠΏΠΎΡ‚Ρ€Π΅Π±Π½ΠΎΡΡ‚ΡŒ Π² Ξ²2-агонистах ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ³ΠΎ дСйствия, ΠΏΠ΅Ρ€Π΅Π½ΠΎΡΠΈΠΌΠΎΡΡ‚ΡŒ ΠΈ Π±Π΅Π·ΠΎΠΏΠ°ΡΠ½ΠΎΡΡ‚ΡŒ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Ни Ρƒ ΠΊΠΎΠ³ΠΎ ΠΈΠ· ΠΏΠ°Ρ†ΠΈΠ΅Π½Ρ‚ΠΎΠ² Π½Π΅ Π²ΠΎΠ·Π½ΠΈΠΊΠ»ΠΎ трудностСй Π² использовании Π‘Π΅ΠΊΠ»Π°Π·ΠΎΠ½Π° ЭКО "Π›Π΅Π³ΠΊΠΎΠ΅ Π΄Ρ‹Ρ…Π°Π½ΠΈΠ΅" ΠΈ АэролайзСра. К 8-ΠΉ Π½Π΅Π΄. Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ Ρƒ всСх Π΄Π΅Ρ‚Π΅ΠΉ исчСзли клиничСскиС проявлСния БА, Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·ΠΎΠ²Π°Π»Π°ΡΡŒ Π§Π”, отсутствовали Ρ„ΠΈΠ·ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ измСнСния Π² Π»Π΅Π³ΠΊΠΈΡ…. ДостовСрноС ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»Π΅ΠΉ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ внСшнСго дыхания, ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с исходными, ΠΎΡ‚ΠΌΠ΅Ρ‡Π°Π»ΠΎΡΡŒ Ρ‡Π΅Ρ€Π΅Π· 12 Π½Π΅Π΄. Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. Π’ ΠΏΡ€ΠΎΠ±Π΅ с Π±Ρ€ΠΎΠ½Ρ…ΠΎΠ»ΠΈΡ‚ΠΈΠΊΠΎΠΌ достовСрно ΡƒΠΌΠ΅Π½ΡŒΡˆΠΈΠ»ΡΡ прирост FEV1, Ρ‡Ρ‚ΠΎ ΡΠ²ΠΈΠ΄Π΅Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΡƒΠ΅Ρ‚ ΠΎ Π½ΠΎΡ€ΠΌΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ Π±Ρ€ΠΎΠ½Ρ…ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ проходимости ΠΈ сниТСнии Π±Ρ€ΠΎΠ½Ρ…ΠΎΠ»Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΠΈ. Пиковая ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ Π²Ρ‹Π΄ΠΎΡ…Π° Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅ ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΠ²Π°Π»Π°ΡΡŒ Π΄Π°ΠΆΠ΅ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ, исходно ΠΈΠΌΠ΅Π²ΡˆΠΈΡ… Π½ΠΎΡ€ΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ ΠΏΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΠΈ. ΠŸΠΎΡ‚Ρ€Π΅Π±Π½ΠΎΡΡ‚ΡŒ Π² ΠΊΠΎΡ€ΠΎΡ‚ΠΊΠΎΠ΄Π΅ΠΉΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… Ξ²2-агонистах Π² Ρ…ΠΎΠ΄Π΅ исслСдования снизилась с 1,9 Β± 0,4 Π΄ΠΎ 0,6 Β± 0,2 ΠΈΠ½Π³./сут. ΠžΡ‚ΠΌΠ΅Ρ‡Π΅Π½Π° Ρ…ΠΎΡ€ΠΎΡˆΠ°Ρ ΠΏΠ΅Ρ€Π΅Π½ΠΎΡΠΈΠΌΠΎΡΡ‚ΡŒ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ.ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ΅ исслСдованиС ΠΏΠΎΠΊΠ°Π·Π°Π»ΠΎ, Ρ‡Ρ‚ΠΎ комбинация Π‘Π΅ΠΊΠ»Π°Π·ΠΎΠ½Π° ЭКО "Π›Π΅Π³ΠΊΠΎΠ΅ Π΄Ρ‹Ρ…Π°Π½ΠΈΠ΅" ΠΈ Π€ΠΎΡ€Π°Π΄ΠΈΠ»Π° Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ со срСднСтяТСлой БА ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ ΠΊ Π΄ΠΎΡΡ‚ΠΈΠΆΠ΅Π½ΠΈΡŽ контроля заболСвания, стабилизации состояния, ΠΈΡΡ‡Π΅Π·Π½ΠΎΠ²Π΅Π½ΠΈΡŽ симптомов БА, ΡƒΠ»ΡƒΡ‡ΡˆΠ΅Π½ΠΈΡŽ Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΈ внСшнСго дыхания

    Child’s heart development and contractility from prenatal to postnatal period

    Get PDF
    This literature review analyzes current data on the main stages of child’s heart contractility development from prenatal to postnatal period. The presented information will expand the conventional ideas on the age-related cardiovascular physiology in children, supplementing with relevant knowledge about the patterns of left ventricular mechanics, and the mechanisms affecting child’s heart morphology. In addition, we consider the evolutionary feasibility of the simultaneous existence of various left ventricular mechanics models, which ensure the effective cardiac function in the postnatal period. This is very important for the work of neonatologists, pediatricians, pediatric cardiologists and therapists

    ΠžΠΏΡ‹Ρ‚ примСнСния Ρ‚ΠΈΠ°ΠΌΡ„Π΅Π½ΠΈΠΊΠΎΠ»Π° Π³Π»ΠΈΡ†ΠΈΠ½Π°Ρ‚ ацСтилцистСината ΠΏΡ€ΠΈ остром Π±Ρ€ΠΎΠ½Ρ…ΠΈΡ‚Π΅ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ

    Get PDF
    The aim of this study was to analyze clinical efficacy and safety of inhaled thiamphenicol glycinate acetylcisteinate (TGA) compared to conventional systemic antibacterial therapy in children with acute bronchitis.Methods. This was a randomized open postmarketing parallel-group trial which involved 150 children (71 boys) aged 3 to 17 years with acute bronchitis. Children were included to the trial if they did not improve in 5–6 days of a symptomatic treatment or if they had bacterial respiratory infection. The patients were randomly assigned either to nebulized inhalations of TGA or oral macrolides plus oral N-acetylcysteine for 7 days. Efficacy of therapy was assessed by clinical sign scoring and lung function measured by computed bronchophonography.Results. In 3 days of the treatment, the body temperature decreased to low-grade fever in both the groups. Clinical signs of acute bronchitis improved significantly in 84% of the TGA group patients with statistically significant difference compared to the controls; cough and sputum production were 1.7 Β± 0.06 and 2.1 Β± 0.02, respectively (Ρ€ < 0.05); wheezing reduced in 1.5 times in the TGA group to the 3rd day. To the 7th day of the treatment, improvement was equal in both the group and clinical efficacy (recovering, improvement, or no change) did not differ between the groups. Systemic antibacterial therapy was not required in the TGA group.Conclusion. The results have shown the high clinical efficacy of inhaled TGA in children with acute bacterial bronchitis. Systemic macrolides did not improve clinical outcomes and did not shortened the length of the disease, but caused more adverse events compared to the inhaled topic antibacterial therapy.ΠžΡΡ‚Ρ€Ρ‹Π΅ ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΈ Π²Π΅Ρ€Ρ…Π½ΠΈΡ… ΠΈ Π½ΠΈΠΆΠ½ΠΈΡ… Π΄Ρ‹Ρ…Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡƒΡ‚Π΅ΠΉ ΡΠ²Π»ΡΡŽΡ‚ΡΡ самыми частыми заболСваниями Π² Π°ΠΌΠ±ΡƒΠ»Π°Ρ‚ΠΎΡ€Π½ΠΎΠΉ ΠΏΡ€Π°ΠΊΡ‚ΠΈΠΊΠ΅, с ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΌΠΈ Π²ΡΡ‚Ρ€Π΅Ρ‡Π°ΡŽΡ‚ΡΡ ΠΏΠ΅Π΄ΠΈΠ°Ρ‚Ρ€Ρ‹. Однако частота примСнСния систСмной Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½ΠΎΠΉ Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ (АБВ) ΠΏΡ€ΠΈ этих инфСкциях Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ достаточно высока.ΠœΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Ρ‹ ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹. ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ ΠΎΡ‚ΠΊΡ€Ρ‹Ρ‚ΠΎΠ΅ пострСгистрационноС Ρ€Π°Π½Π΄ΠΎΠΌΠΈΠ·ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ΅ исслСдованиС Π² ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… Π³Ρ€ΡƒΠΏΠΏΠ°Ρ… ΠΏΠΎ ΠΎΡ†Π΅Π½ΠΊΠ΅ эффСктивности ΠΈ бСзопасности примСнСния ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° Ρ‚ΠΈΠ°ΠΌΡ„Π΅Π½ΠΈΠΊΠΎΠ»Π° глицинатацСтилцистСината (ВГА) Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ (n = 150: 71 ΠΌΠ°Π»ΡŒΡ‡ΠΈΠΊ, 79 Π΄Π΅Π²ΠΎΡ‡Π΅ΠΊ; срСдний возраст – 9,9 Β± 0,8 Π³ΠΎΠ΄Π°) с острыми рСспираторными заболСваниями, ΠΏΡ€ΠΎΡ‚Π΅ΠΊΠ°ΡŽΡ‰ΠΈΠΌΠΈ с клиничСскими явлСниями Π±Ρ€ΠΎΠ½Ρ…ΠΈΡ‚Π°.Π Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ‹. По Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°ΠΌ ΠΏΡ€ΠΎΠ²Π΅Π΄Π΅Π½Π½ΠΎΠ³ΠΎ исслСдования установлСна высокая клиничСская ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ ВГА ΠΏΡ€ΠΈ Π»Π΅Ρ‡Π΅Π½ΠΈΠΈ острых Π±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹Ρ… рСспираторных ΠΈΠ½Ρ„Π΅ΠΊΡ†ΠΈΠΉ Π² Ρ€Π΅ΠΆΠΈΠΌΠ΅ ингаляционной Ρ‚Π΅Ρ€Π°ΠΏΠΈΠΈ. ΠŸΡ€Π΅Π΄ΡΡ‚Π°Π²Π»Π΅Π½ ΠΎΠΏΡ‹Ρ‚ примСнСния ВГА ΠΏΡ€ΠΈ остром Π±Ρ€ΠΎΠ½Ρ…ΠΈΡ‚Π΅ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ Π² сравнСнии с систСмными Π°Π½Ρ‚ΠΈΠ±Π°ΠΊΡ‚Π΅Ρ€ΠΈΠ°Π»ΡŒΠ½Ρ‹ΠΌΠΈ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π°ΠΌΠΈ (ΠΠ‘ΠŸ).Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅. Π Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΠΎΠ²Π°Π½ΠΎ ΡˆΠΈΡ€ΠΎΠΊΠΎΠ΅ Π½Π°Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΡ€Π΅ΠΏΠ°Ρ€Π°Ρ‚Π° ВГА Π² качСствС бСзопасной Π°Π»ΡŒΡ‚Π΅Ρ€Π½Π°Ρ‚ΠΈΠ²Ρ‹ систСмным ΠΠ‘ΠŸ ΠΏΡ€ΠΈ остром Π±Ρ€ΠΎΠ½Ρ…ΠΈΡ‚Π΅ Ρƒ Π΄Π΅Ρ‚Π΅ΠΉ, особСнно ΠΏΡ€ΠΈ нСобходимости провСдСния муколитичСской АБВ
    • …
    corecore