3,305 research outputs found

    Theory of the Lightly Doped Mott Insulator

    Full text link
    A theory for the Hubbard model appropriate in the limit of large U/t, small doping away from half-filling and short-ranged antiferromagnetic spin correlations is presented. Despite the absence of any broken symmetry the Fermi surface takes the form of elliptical hole pockets centered near (pi/2,pi/2) with a volume proportional to the hole concentration. Short range antiferromagnetic correlations render the nearest neighbor hopping almost ineffective so that only second or third nearest neighbor hopping contributes appreciably to the dispersion relation.Comment: 9 pages, 3 figure

    Finite temperature properties of the 2D Kondo lattice model

    Full text link
    Using recently developed Lanczos technique we study finite-temperature properties of the 2D Kondo lattice model at various fillings of the conduction band. At half filling the quasiparticle gap governs physical properties of the chemical potential and the charge susceptibility at small temperatures. In the intermediate coupling regime quasiparticle gap scales approximately linearly with Kondo coupling. Temperature dependence of the spin susceptibility reveals the existence of two different temperature scales. A spin gap in the intermediate regime leads to exponential drop of the spin susceptibility at low temperatures. Unusual scaling of spin susceptibility is found for temperatures above 0.6 J. Charge susceptibility at finite doping reveals existence of heavy quasiparticles. A new low energy scale is found at finite doping.Comment: REVTeX, 7 pages, 7 figure

    Quasiparticle dispersion of the t-J and Hubbard models

    Full text link
    The spectral weight A(p,ω){\rm A({\bf p},\omega)} of the two dimensional tJ{\rm t-J} and Hubbard models has been calculated using exact diagonalization and quantum Monte Carlo techniques, at several densities 1.0n0.5{\rm 1.0 \leq \langle n \rangle \leq 0.5}. The photoemission (ω<0)(\omega < 0) region contains two dominant distinct features, namely a low-energy quasiparticle peak with bandwidth of order J, and a broad valence band peak at energies of order t. This behavior persistspersists away from half-filling, as long as the antiferromagnetic (AF) correlations are robust. The results give support to theories of the copper oxide materials based on the behavior of holes in antiferromagnets, and it also provides theoretical guidance for the interpretation of experimental photoemission data for the cuprates.Comment: (minor changes) RevTeX, 4 figures available on reques

    Anomalous low doping phase of the Hubbard model

    Full text link
    We present results of a systematic Quantum-Monte-Carlo study for the single-band Hubbard model. Thereby we evaluated single-particle spectra (PES & IPES), two-particle spectra (spin & density correlation functions), and the dynamical correlation function of suitably defined diagnostic operators, all as a function of temperature and hole doping. The results allow to identify different physical regimes. Near half-filling we find an anomalous `Hubbard-I phase', where the band structure is, up to some minor modifications, consistent with the Hubbard-I predictions. At lower temperatures, where the spin response becomes sharp, additional dispersionless `bands' emerge due to the dressing of electrons/holes with spin excitatons. We present a simple phenomenological fit which reproduces the band structure of the insulator quantitatively. The Fermi surface volume in the low doping phase, as derived from the single-particle spectral function, is not consistent with the Luttinger theorem, but qualitatively in agreement with the predictions of the Hubbard-I approximation. The anomalous phase extends up to a hole concentration of 15%, i.e. the underdoped region in the phase diagram of high-T_c superconductors. We also investigate the nature of the magnetic ordering transition in the single particle spectra. We show that the transition to an SDW-like band structure is not accomplished by the formation of any resolvable `precursor bands', but rather by a (spectroscopically invisible) band of spin 3/2 quasiparticles. We discuss implications for the `remnant Fermi surface' in insulating cuprate compounds and the shadow bands in the doped materials.Comment: RevTex-file, 20 PRB pages, 16 figures included partially as gif. A full ps-version including ps-figures can be found at http://theorie.physik.uni-wuerzburg.de/~eder/condmat.ps.gz Hardcopies of figures (or the entire manuscript) can also be obtained by e-mail request to: [email protected]

    Coarse-grained simulations of flow-induced nucleation in semi-crystalline polymers

    Full text link
    We perform kinetic Monte Carlo simulations of flow-induced nucleation in polymer melts with an algorithm that is tractable even at low undercooling. The configuration of the non-crystallized chains under flow is computed with a recent non-linear tube model. Our simulations predict both enhanced nucleation and the growth of shish-like elongated nuclei for sufficiently fast flows. The simulations predict several experimental phenomena and theoretically justify a previously empirical result for the flow-enhanced nucleation rate. The simulations are highly pertinent to both the fundamental understanding and process modeling of flow-induced crystallization in polymer melts.Comment: 17 pages, 6 eps figure

    The Kondo lattice model from strong-coupling viewpoint

    Full text link
    We present some preliminary results on the phase diagram of the 2D S=1/2 Kondo lattice model at finite doping. As a starting point the Hamiltonian is written in terms of local spin and charge excitations, and the interactions between these modes are subsequently treated in various perturbative schemes. We find that a paramagnetic-magnetic quantum phase transition does occur, and, at least on a superficial level, the Kondo effect does not break down at the critical point. The latter result however might well be a consequence of the inherent bias of our starting point and/or the level of approximation.Comment: 4 pages, to appear in the Proceedings of SCES 2001, Ann Arbor, August 200

    A high power CMOS class-D amplifier for inductive-link medical transmitters

    Get PDF
    Powering of medical implants by inductive coupling is an effective technique, which avoids the use of bulky implanted batteries or transcutaneous wires. On the external unit side, class-D and class-E power amplifiers (PAs) are conventionally used thanks to their high efficiency at high frequencies. The initial specifications driving this work require the use of multiple independent stimulators, which imposes serious constraints on the area and functionality of the external unit. An integrated circuit class-D PA has been designed to provide both small area and enhanced functionality, the latter achieved by the addition of an on-chip phased-locked loop (PLL), a dead-time generator and a phase detector. The PA has been designed in a 0.18μm CMOS high-voltage process technology and occupies an area of 9.86 mm2. It works at frequencies up to 14 MHz and 30 V supply and efficiencies higher than 80% are obtained at 14 MHz. The PA is intended for a closed-loop transmitter system that optimises power delivery to medical implants

    Isovector nuclear spin-orbit interaction from chiral pion-nucleon dynamics

    Get PDF
    Using the two-loop approximation of chiral perturbation theory, we calculate the momentum and density dependent isovector nuclear spin-orbit strength Vls(p,kf)V_{ls}(p,k_f). This quantity is derived from the spin-dependent part of the interaction energy Σspin=i2σ(q×p)[Uls(p,kf)Vls(p,kf)τ3δ]\Sigma_{spin} = {i\over 2} \vec \sigma \cdot (\vec q \times\vec p)[U_{ls}(p,k_f)- V_{ls}(p,k_f)\tau_3 \delta] of a nucleon scattering off weakly inhomogeneous isospin-asymmetric nuclear matter. We find that iterated 1π1\pi-exchange generates at saturation density, kf0=272.7k_{f0}=272.7 MeV, an isovector nuclear spin-orbit strength at p=0p=0 of Vls(0,kf0)50V_{ls}(0,k_{f0}) \simeq 50 MeVfm2^2. This value is about 1.4 times the analogous isoscalar nuclear spin-orbit strength Uls(0,kf0)35U_{ls}(0,k_{f0})\simeq 35 MeVfm2^2 generated by the same two-pion exchange diagrams. We also calculate several relativistic 1/M-corrections to the isoscalar nuclear spin-orbit strength. In particular, we evaluate the contributions from irreducible two-pion exchange to Uls(p,kf)U_{ls}(p,k_f). The effects of the three-body diagrams constructed from the Weinberg-Tomozawa ππNN\pi\pi NN-contact vertex on the isoscalar nuclear spin-orbit strength are computed. We find that such relativistic 1/M-corrections are less than 20% of the isoscalar nuclear spin-orbit strength generated by iterated one-pion-exchange, in accordance with the expectation from chiral power counting.Comment: 15 pages, 8 figure

    Excitation spectrum of the homogeneous spin liquid

    Full text link
    We discuss the excitation spectrum of a disordered, isotropic and translationally invariant spin state in the 2D Heisenberg antiferromagnet. The starting point is the nearest-neighbor RVB state which plays the role of the vacuum of the theory, in a similar sense as the Neel state is the vacuum for antiferromagnetic spin wave theory. We discuss the elementary excitations of this state and show that these are not Fermionic spin-1/2 `spinons' but spin-1 excited dimers which must be modeled by bond Bosons. We derive an effective Hamiltonian describing the excited dimers which is formally analogous to spin wave theory. Condensation of the bond-Bosons at zero temperature into the state with momentum (pi,pi) is shown to be equivalent to antiferromagnetic ordering. The latter is a key ingredient for a microscopic interpretation of Zhang's SO(5) theory of cuprate superconductivityComment: RevTex-file, 16 PRB pages with 13 embedded eps figures. Hardcopies of figures (or the entire manuscript) can be obtained by e-mail request to: [email protected]
    corecore